Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Aug;83(2):899–911. doi: 10.1016/S0006-3495(02)75216-8

The chloroplast protein import channel Toc75: pore properties and interaction with transit peptides.

Silke C Hinnah 1, Richard Wagner 1, Natalia Sveshnikova 1, Roswitha Harrer 1, Jürgen Soll 1
PMCID: PMC1302194  PMID: 12124272

Abstract

The channel properties of Toc75 (the protein import pore of the outer chloroplastic membrane) were further characterized by electrophysiological measurements in planar lipid bilayers. After improvement of the Toc75 reconstitution procedure the voltage dependence of the channel open probability resembled those observed for other beta-barrel pores. Studies concerning the pore size of the reconstituted Toc75 indicate the presence of a narrow restriction zone corresponding to the selectivity filter and a wider pore vestibule with diameters of approximately 14 A and 26 A, respectively. Interactions between Toc75 and different peptides (a genuine chloroplastic transit peptide, a synthetic peptide resembling a transit peptide, and a mitochondrial presequence) show that Toc75 itself is able to differentiate between these peptides and the recognition is based on both conformational and electrostatic interactions.

Full Text

The Full Text of this article is available as a PDF (806.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison D. S., Schatz G. Artificial mitochondrial presequences. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9011–9015. doi: 10.1073/pnas.83.23.9011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bainbridge G., Gokce I., Lakey J. H. Voltage gating is a fundamental feature of porin and toxin beta-barrel membrane channels. FEBS Lett. 1998 Jul 24;431(3):305–308. doi: 10.1016/s0014-5793(98)00761-3. [DOI] [PubMed] [Google Scholar]
  3. Benz R., Schmid A., Hancock R. E. Ion selectivity of gram-negative bacterial porins. J Bacteriol. 1985 May;162(2):722–727. doi: 10.1128/jb.162.2.722-727.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bezrukov S. M., Kasianowicz J. J. The charge state of an ion channel controls neutral polymer entry into its pore. Eur Biophys J. 1997;26(6):471–476. doi: 10.1007/s002490050101. [DOI] [PubMed] [Google Scholar]
  5. Bölter B., May T., Soll J. A protein import receptor in pea chloroplasts, Toc86, is only a proteolytic fragment of a larger polypeptide. FEBS Lett. 1998 Dec 11;441(1):59–62. doi: 10.1016/s0014-5793(98)01525-7. [DOI] [PubMed] [Google Scholar]
  6. Bölter B., Soll J., Schulz A., Hinnah S., Wagner R. Origin of a chloroplast protein importer. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15831–15836. doi: 10.1073/pnas.95.26.15831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen D., Eisenberg R. Charges, currents, and potentials in ionic channels of one conformation. Biophys J. 1993 May;64(5):1405–1421. doi: 10.1016/S0006-3495(93)81507-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen K., Chen X., Schnell D. J. Initial binding of preproteins involving the Toc159 receptor can be bypassed during protein import into chloroplasts. Plant Physiol. 2000 Mar;122(3):813–822. doi: 10.1104/pp.122.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen X., Schnell D. J. Protein import into chloroplasts. Trends Cell Biol. 1999 Jun;9(6):222–227. doi: 10.1016/s0962-8924(99)01554-8. [DOI] [PubMed] [Google Scholar]
  10. Clark S. A., Theg S. M. A folded protein can be transported across the chloroplast envelope and thylakoid membranes. Mol Biol Cell. 1997 May;8(5):923–934. doi: 10.1091/mbc.8.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cline K., Henry R., Li C., Yuan J. Multiple pathways for protein transport into or across the thylakoid membrane. EMBO J. 1993 Nov;12(11):4105–4114. doi: 10.1002/j.1460-2075.1993.tb06094.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cohen F. S., Niles W. D., Akabas M. H. Fusion of phospholipid vesicles with a planar membrane depends on the membrane permeability of the solute used to create the osmotic pressure. J Gen Physiol. 1989 Feb;93(2):201–210. doi: 10.1085/jgp.93.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal structures explain functional properties of two E. coli porins. Nature. 1992 Aug 27;358(6389):727–733. doi: 10.1038/358727a0. [DOI] [PubMed] [Google Scholar]
  14. Dani J. A., Fox J. A. Examination of subconductance levels arising from a single ion channel. J Theor Biol. 1991 Dec 7;153(3):401–423. doi: 10.1016/s0022-5193(05)80578-8. [DOI] [PubMed] [Google Scholar]
  15. Douwe de Boer A., Weisbeek P. J. Chloroplast protein topogenesis: import, sorting and assembly. Biochim Biophys Acta. 1991 Nov 13;1071(3):221–253. doi: 10.1016/0304-4157(91)90015-o. [DOI] [PubMed] [Google Scholar]
  16. Eisenberg R. S. Computing the field in proteins and channels. J Membr Biol. 1996 Mar;150(1):1–25. doi: 10.1007/s002329900026. [DOI] [PubMed] [Google Scholar]
  17. Endo T., Kawamura K., Nakai M. The chloroplast-targeting domain of plastocyanin transit peptide can form a helical structure but does not have a high affinity for lipid bilayers. Eur J Biochem. 1992 Jul 15;207(2):671–675. doi: 10.1111/j.1432-1033.1992.tb17094.x. [DOI] [PubMed] [Google Scholar]
  18. Gray M. W. The endosymbiont hypothesis revisited. Int Rev Cytol. 1992;141:233–357. doi: 10.1016/s0074-7696(08)62068-9. [DOI] [PubMed] [Google Scholar]
  19. Hamman B. D., Chen J. C., Johnson E. E., Johnson A. E. The aqueous pore through the translocon has a diameter of 40-60 A during cotranslational protein translocation at the ER membrane. Cell. 1997 May 16;89(4):535–544. doi: 10.1016/s0092-8674(00)80235-4. [DOI] [PubMed] [Google Scholar]
  20. Hanein D., Matlack K. E., Jungnickel B., Plath K., Kalies K. U., Miller K. R., Rapoport T. A., Akey C. W. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell. 1996 Nov 15;87(4):721–732. doi: 10.1016/s0092-8674(00)81391-4. [DOI] [PubMed] [Google Scholar]
  21. Hashimoto A., Ettinger W. F., Yamamoto Y., Theg S. M. Assembly of Newly Imported Oxygen-Evolving Complex Subunits in Isolated Chloroplasts: Sites of Assembly and Mechanism of Binding. Plant Cell. 1997 Mar;9(3):441–452. doi: 10.1105/tpc.9.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hill K., Model K., Ryan M. T., Dietmeier K., Martin F., Wagner R., Pfanner N. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins [see comment]. Nature. 1998 Oct 1;395(6701):516–521. doi: 10.1038/26780. [DOI] [PubMed] [Google Scholar]
  23. Hinnah S. C., Hill K., Wagner R., Schlicher T., Soll J. Reconstitution of a chloroplast protein import channel. EMBO J. 1997 Dec 15;16(24):7351–7360. doi: 10.1093/emboj/16.24.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Holloway P. W. A simple procedure for removal of Triton X-100 from protein samples. Anal Biochem. 1973 May;53(1):304–308. doi: 10.1016/0003-2697(73)90436-3. [DOI] [PubMed] [Google Scholar]
  25. Horniak L., Pilon M., van 't Hof R., de Kruijff B. The secondary structure of the ferredoxin transit sequence is modulated by its interaction with negatively charged lipids. FEBS Lett. 1993 Nov 15;334(2):241–246. doi: 10.1016/0014-5793(93)81720-k. [DOI] [PubMed] [Google Scholar]
  26. Jap B. K., Walian P. J. Structure and functional mechanism of porins. Physiol Rev. 1996 Oct;76(4):1073–1088. doi: 10.1152/physrev.1996.76.4.1073. [DOI] [PubMed] [Google Scholar]
  27. Karshikoff A., Spassov V., Cowan S. W., Ladenstein R., Schirmer T. Electrostatic properties of two porin channels from Escherichia coli. J Mol Biol. 1994 Jul 22;240(4):372–384. doi: 10.1006/jmbi.1994.1451. [DOI] [PubMed] [Google Scholar]
  28. Kessler F., Blobel G., Patel H. A., Schnell D. J. Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science. 1994 Nov 11;266(5187):1035–1039. doi: 10.1126/science.7973656. [DOI] [PubMed] [Google Scholar]
  29. Klebba P. E., Newton S. M. Mechanisms of solute transport through outer membrane porins: burning down the house. Curr Opin Microbiol. 1998 Apr;1(2):238–247. doi: 10.1016/s1369-5274(98)80017-9. [DOI] [PubMed] [Google Scholar]
  30. Komiya T., Rospert S., Koehler C., Looser R., Schatz G., Mihara K. Interaction of mitochondrial targeting signals with acidic receptor domains along the protein import pathway: evidence for the 'acid chain' hypothesis. EMBO J. 1998 Jul 15;17(14):3886–3898. doi: 10.1093/emboj/17.14.3886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kouranov A., Schnell D. J. Analysis of the interactions of preproteins with the import machinery over the course of protein import into chloroplasts. J Cell Biol. 1997 Dec 29;139(7):1677–1685. doi: 10.1083/jcb.139.7.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Krasilnikov O. V., Sabirov R. Z., Ternovsky V. I., Merzliak P. G., Muratkhodjaev J. N. A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol Immunol. 1992 Sep;5(1-3):93–100. doi: 10.1111/j.1574-6968.1992.tb05891.x. [DOI] [PubMed] [Google Scholar]
  33. Kreusch A., Neubüser A., Schiltz E., Weckesser J., Schulz G. E. Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 A resolution. Protein Sci. 1994 Jan;3(1):58–63. doi: 10.1002/pro.5560030108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Krimm I., Gans P., Hernandez J. F., Arlaud G. J., Lancelin J. M. A coil-helix instead of a helix-coil motif can be induced in a chloroplast transit peptide from Chlamydomonas reinhardtii. Eur J Biochem. 1999 Oct 1;265(1):171–180. doi: 10.1046/j.1432-1327.1999.00701.x. [DOI] [PubMed] [Google Scholar]
  35. Künkele K. P., Heins S., Dembowski M., Nargang F. E., Benz R., Thieffry M., Walz J., Lill R., Nussberger S., Neupert W. The preprotein translocation channel of the outer membrane of mitochondria. Cell. 1998 Jun 12;93(6):1009–1019. doi: 10.1016/s0092-8674(00)81206-4. [DOI] [PubMed] [Google Scholar]
  36. Laio A., Torre V. Physical origin of selectivity in ionic channels of biological membranes. Biophys J. 1999 Jan;76(1 Pt 1):129–148. doi: 10.1016/S0006-3495(99)77184-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Laver D. R., Peter W. G. Interpretation of substates in ion channels: unipores or multipores? Prog Biophys Mol Biol. 1997;67(2-3):99–140. doi: 10.1016/s0079-6107(97)00008-4. [DOI] [PubMed] [Google Scholar]
  38. Lazdunski C. J. Colicin import and pore formation: a system for studying protein transport across membranes? Mol Microbiol. 1995 Jun;16(6):1059–1066. doi: 10.1111/j.1365-2958.1995.tb02331.x. [DOI] [PubMed] [Google Scholar]
  39. Ma Y., Kouranov A., LaSala S. E., Schnell D. J. Two components of the chloroplast protein import apparatus, IAP86 and IAP75, interact with the transit sequence during the recognition and translocation of precursor proteins at the outer envelope. J Cell Biol. 1996 Jul;134(2):315–327. doi: 10.1083/jcb.134.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Mannella C. A., Neuwald A. F., Lawrence C. E. Detection of likely transmembrane beta strand regions in sequences of mitochondrial pore proteins using the Gibbs sampler. J Bioenerg Biomembr. 1996 Apr;28(2):163–169. doi: 10.1007/BF02110647. [DOI] [PubMed] [Google Scholar]
  41. Martin W., Stoebe B., Goremykin V., Hapsmann S., Hasegawa M., Kowallik K. V. Gene transfer to the nucleus and the evolution of chloroplasts. Nature. 1998 May 14;393(6681):162–165. doi: 10.1038/30234. [DOI] [PubMed] [Google Scholar]
  42. Miller C. Allosteric proteins. Cuddling up to channel activation. Nature. 1997 Sep 25;389(6649):328–329. doi: 10.1038/38599. [DOI] [PubMed] [Google Scholar]
  43. Neuhaus H. E., Wagner R. Solute pores, ion channels, and metabolite transporters in the outer and inner envelope membranes of higher plant plastids. Biochim Biophys Acta. 2000 May 1;1465(1-2):307–323. doi: 10.1016/s0005-2736(00)00146-2. [DOI] [PubMed] [Google Scholar]
  44. Niles W. D., Cohen F. S. Video fluorescence microscopy studies of phospholipid vesicle fusion with a planar phospholipid membrane. Nature of membrane-membrane interactions and detection of release of contents. J Gen Physiol. 1987 Nov;90(5):703–735. doi: 10.1085/jgp.90.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Perry S. E., Keegstra K. Envelope membrane proteins that interact with chloroplastic precursor proteins. Plant Cell. 1994 Jan;6(1):93–105. doi: 10.1105/tpc.6.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pilon M., Wienk H., Sips W., de Swaaf M., Talboom I., van 't Hof R., de Korte-Kool G., Demel R., Weisbeek P., de Kruijff B. Functional domains of the ferredoxin transit sequence involved in chloroplast import. J Biol Chem. 1995 Feb 24;270(8):3882–3893. doi: 10.1074/jbc.270.8.3882. [DOI] [PubMed] [Google Scholar]
  47. Rensink W. A., Pilon M., Weisbeek P. Domains of a transit sequence required for in vivo import in Arabidopsis chloroplasts. Plant Physiol. 1998 Oct;118(2):691–699. doi: 10.1104/pp.118.2.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Reumann S., Davila-Aponte J., Keegstra K. The evolutionary origin of the protein-translocating channel of chloroplastic envelope membranes: identification of a cyanobacterial homolog. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):784–789. doi: 10.1073/pnas.96.2.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Rogl H., Kosemund K., Kühlbrandt W., Collinson I. Refolding of Escherichia coli produced membrane protein inclusion bodies immobilised by nickel chelating chromatography. FEBS Lett. 1998 Jul 31;432(1-2):21–26. doi: 10.1016/s0014-5793(98)00825-4. [DOI] [PubMed] [Google Scholar]
  50. Sabirov R. Z., Krasilnikov O. V., Ternovsky V. I., Merzliak P. G. Relation between ionic channel conductance and conductivity of media containing different nonelectrolytes. A novel method of pore size determination. Gen Physiol Biophys. 1993 Apr;12(2):95–111. [PubMed] [Google Scholar]
  51. Schatz G. Just follow the acid chain. Nature. 1997 Jul 10;388(6638):121–122. doi: 10.1038/40510. [DOI] [PubMed] [Google Scholar]
  52. Schatz G. Protein transport. The doors to organelles. Nature. 1998 Oct 1;395(6701):439–440. doi: 10.1038/26620. [DOI] [PubMed] [Google Scholar]
  53. Schleiff E., Soll J. Travelling of proteins through membranes: translocation into chloroplasts. Planta. 2000 Sep;211(4):449–456. doi: 10.1007/s004250000357. [DOI] [PubMed] [Google Scholar]
  54. Schnell D. J., Blobel G., Keegstra K., Kessler F., Ko K., Soll J. A consensus nomenclature for the protein-import components of the chloroplast envelope. Trends Cell Biol. 1997 Aug;7(8):303–304. doi: 10.1016/S0962-8924(97)01111-2. [DOI] [PubMed] [Google Scholar]
  55. Schülein K., Schmid K., Benzl R. The sugar-specific outer membrane channel ScrY contains functional characteristics of general diffusion pores and substrate-specific porins. Mol Microbiol. 1991 Sep;5(9):2233–2241. doi: 10.1111/j.1365-2958.1991.tb02153.x. [DOI] [PubMed] [Google Scholar]
  56. Seedorf M., Waegemann K., Soll J. A constituent of the chloroplast import complex represents a new type of GTP-binding protein. Plant J. 1995 Mar;7(3):401–411. doi: 10.1046/j.1365-313x.1995.7030401.x. [DOI] [PubMed] [Google Scholar]
  57. Smart O. S., Breed J., Smith G. R., Sansom M. S. A novel method for structure-based prediction of ion channel conductance properties. Biophys J. 1997 Mar;72(3):1109–1126. doi: 10.1016/S0006-3495(97)78760-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Sohrt K., Soll J. Toc64, a new component of the protein translocon of chloroplasts. J Cell Biol. 2000 Mar 20;148(6):1213–1221. doi: 10.1083/jcb.148.6.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Sveshnikova N., Grimm R., Soll J., Schleiff E. Topology studies of the chloroplast protein import channel Toc75. Biol Chem. 2000 Aug;381(8):687–693. doi: 10.1515/BC.2000.089. [DOI] [PubMed] [Google Scholar]
  60. Vothknecht U. C., Soll J. Protein import: the hitchhikers guide into chloroplasts. Biol Chem. 2000 Sep-Oct;381(9-10):887–897. doi: 10.1515/BC.2000.110. [DOI] [PubMed] [Google Scholar]
  61. Wienk H. L., Czisch M., de Kruijff B. The structural flexibility of the preferredoxin transit peptide. FEBS Lett. 1999 Jun 25;453(3):318–326. doi: 10.1016/s0014-5793(99)00653-5. [DOI] [PubMed] [Google Scholar]
  62. Woodbury D. J., Hall J. E. Role of channels in the fusion of vesicles with a planar bilayer. Biophys J. 1988 Dec;54(6):1053–1063. doi: 10.1016/S0006-3495(88)83042-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Zimmerberg J., Cohen F. S., Finkelstein A. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane. J Gen Physiol. 1980 Mar;75(3):241–250. doi: 10.1085/jgp.75.3.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. von Heijne G., Nishikawa K. Chloroplast transit peptides. The perfect random coil? FEBS Lett. 1991 Jan 14;278(1):1–3. doi: 10.1016/0014-5793(91)80069-f. [DOI] [PubMed] [Google Scholar]
  66. von Heijne G., Steppuhn J., Herrmann R. G. Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem. 1989 Apr 1;180(3):535–545. doi: 10.1111/j.1432-1033.1989.tb14679.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES