Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Aug;83(2):968–976. doi: 10.1016/S0006-3495(02)75222-3

Nerve growth factor signals via preexisting TrkA receptor oligomers.

Paul S Mischel 1, Joy A Umbach 1, Sepehr Eskandari 1, Shane G Smith 1, Cameron B Gundersen 1, Guido A Zampighi 1
PMCID: PMC1302200  PMID: 12124278

Abstract

Nerve growth factor (NGF) promotes neuronal survival and differentiation by activating TrkA receptors. Similar to other receptor tyrosine kinases, ligand-induced dimerization is thought to be required for TrkA receptor activation. To study this process, we expressed TrkA receptors in Xenopus laevis oocytes and analyzed their response to NGF by using a combination of functional, biochemical, and structural approaches. TrkA receptor protein was detected in the membrane fraction of oocytes injected with TrkA receptor cRNA, but not in uninjected or mock-injected oocytes. Application of NGF to TrkA receptor-expressing oocytes promoted tyrosine phosphorylation and activated an oscillating transmembrane inward current, indicating that the TrkA receptors were functional. Freeze-fracture electron microscopic analysis demonstrated novel transmembrane particles in the P-face (protoplasmic face) of oocytes injected with TrkA cRNA, but not in uninjected or mock injected oocytes. Incubating TrkA cRNA-injected oocytes with the transcriptional inhibitor actinomycin D did not prevent the appearance of these P-face particles or electrophysiological responses to NGF, demonstrating that they did not arise from de novo transcription of an endogenous Xenopus oocyte gene. The appearance of these particles in the plasma membrane correlated with responsiveness to NGF as detected by electrophysiological analysis and receptor phosphorylation, indicating that these novel P-face particles were TrkA receptors. The dimensions of these particles (8.6 x 10 nm) were too large to be accounted for by TrkA monomers, suggesting the formation of TrkA receptor oligomers. Application of NGF did not lead to a discernible change in the size or shape of these TrkA receptor particles during an active response. These results indicate that in Xenopus oocytes, NGF activates signaling via pre-formed TrkA receptor oligomers.

Full Text

The Full Text of this article is available as a PDF (322.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arevalo J. C., Conde B., Hempstead B. L., Chao M. V., Martin-Zanca D., Perez P. TrkA immunoglobulin-like ligand binding domains inhibit spontaneous activation of the receptor. Mol Cell Biol. 2000 Aug;20(16):5908–5916. doi: 10.1128/mcb.20.16.5908-5916.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbacid M. Structural and functional properties of the TRK family of neurotrophin receptors. Ann N Y Acad Sci. 1995 Sep 7;766:442–458. doi: 10.1111/j.1749-6632.1995.tb26693.x. [DOI] [PubMed] [Google Scholar]
  3. Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burke C. L., Lemmon M. A., Coren B. A., Engelman D. M., Stern D. F. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation. Oncogene. 1997 Feb 13;14(6):687–696. doi: 10.1038/sj.onc.1200873. [DOI] [PubMed] [Google Scholar]
  5. Burke C. L., Stern D. F. Activation of Neu (ErbB-2) mediated by disulfide bond-induced dimerization reveals a receptor tyrosine kinase dimer interface. Mol Cell Biol. 1998 Sep;18(9):5371–5379. doi: 10.1128/mcb.18.9.5371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Callamaras N., Parker I. Ca(2+)-dependent activation of Cl(-) currents in Xenopus oocytes is modulated by voltage. Am J Physiol Cell Physiol. 2000 Apr;278(4):C667–C675. doi: 10.1152/ajpcell.2000.278.4.C667. [DOI] [PubMed] [Google Scholar]
  7. Carriero F., Campioni N., Cardinali B., Pierandrei-Amaldi P. Structure and expression of the nerve growth factor gene in Xenopus oocytes and embryos. Mol Reprod Dev. 1991 Aug;29(4):313–322. doi: 10.1002/mrd.1080290402. [DOI] [PubMed] [Google Scholar]
  8. Clary D. O., Weskamp G., Austin L. R., Reichardt L. F. TrkA cross-linking mimics neuronal responses to nerve growth factor. Mol Biol Cell. 1994 May;5(5):549–563. doi: 10.1091/mbc.5.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cochet C., Kashles O., Chambaz E. M., Borrello I., King C. R., Schlessinger J. Demonstration of epidermal growth factor-induced receptor dimerization in living cells using a chemical covalent cross-linking agent. J Biol Chem. 1988 Mar 5;263(7):3290–3295. [PubMed] [Google Scholar]
  10. Connolly J. L., Seeley P. J., Greene L. A. Regulation of growth cone morphology by nerve growth factor: a comparative study by scanning electron microscopy. J Neurosci Res. 1985;13(1-2):183–198. doi: 10.1002/jnr.490130113. [DOI] [PubMed] [Google Scholar]
  11. Eskandari S., Kreman M., Kavanaugh M. P., Wright E. M., Zampighi G. A. Pentameric assembly of a neuronal glutamate transporter. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8641–8646. doi: 10.1073/pnas.97.15.8641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eskandari S., Snyder P. M., Kreman M., Zampighi G. A., Welsh M. J., Wright E. M. Number of subunits comprising the epithelial sodium channel. J Biol Chem. 1999 Sep 17;274(38):27281–27286. doi: 10.1074/jbc.274.38.27281. [DOI] [PubMed] [Google Scholar]
  13. Eskandari S., Wright E. M., Kreman M., Starace D. M., Zampighi G. A. Structural analysis of cloned plasma membrane proteins by freeze-fracture electron microscopy. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11235–11240. doi: 10.1073/pnas.95.19.11235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gadella T. W., Jr, Jovin T. M. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J Cell Biol. 1995 Jun;129(6):1543–1558. doi: 10.1083/jcb.129.6.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hartzell H. C. Activation of different Cl currents in Xenopus oocytes by Ca liberated from stores and by capacitative Ca influx. J Gen Physiol. 1996 Sep;108(3):157–175. doi: 10.1085/jgp.108.3.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heldin C. H., Ernlund A., Rorsman C., Rönnstrand L. Dimerization of B-type platelet-derived growth factor receptors occurs after ligand binding and is closely associated with receptor kinase activation. J Biol Chem. 1989 May 25;264(15):8905–8912. [PubMed] [Google Scholar]
  17. Hempstead B. L., Martin-Zanca D., Kaplan D. R., Parada L. F., Chao M. V. High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature. 1991 Apr 25;350(6320):678–683. doi: 10.1038/350678a0. [DOI] [PubMed] [Google Scholar]
  18. Holden P. H., Asopa V., Robertson A. G., Clarke A. R., Tyler S., Bennett G. S., Brain S. D., Wilcock G. K., Allen S. J., Smith S. K. Immunoglobulin-like domains define the nerve growth factor binding site of the TrkA receptor. Nat Biotechnol. 1997 Jul;15(7):668–672. doi: 10.1038/nbt0797-668. [DOI] [PubMed] [Google Scholar]
  19. Inui H., Kitami Y., Kondo T., Inagami T. Transduction of mitogenic activity of platelet-derived growth factor (PDGF) AB by PDGF-beta receptor without participation of PDGF-alpha receptor in vascular smooth muscle cells. J Biol Chem. 1993 Aug 15;268(23):17045–17050. [PubMed] [Google Scholar]
  20. Jiang G., Hunter T. Receptor signaling: when dimerization is not enough. 1999 Jul 29-Aug 12Curr Biol. 9(15):R568–R571. doi: 10.1016/s0960-9822(99)80357-1. [DOI] [PubMed] [Google Scholar]
  21. Jing S., Tapley P., Barbacid M. Nerve growth factor mediates signal transduction through trk homodimer receptors. Neuron. 1992 Dec;9(6):1067–1079. doi: 10.1016/0896-6273(92)90066-m. [DOI] [PubMed] [Google Scholar]
  22. Kaplan D. R., Miller F. D. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000 Jun;10(3):381–391. doi: 10.1016/s0959-4388(00)00092-1. [DOI] [PubMed] [Google Scholar]
  23. Kaplan D. R., Stephens R. M. Neurotrophin signal transduction by the Trk receptor. J Neurobiol. 1994 Nov;25(11):1404–1417. doi: 10.1002/neu.480251108. [DOI] [PubMed] [Google Scholar]
  24. Klein R., Nanduri V., Jing S. A., Lamballe F., Tapley P., Bryant S., Cordon-Cardo C., Jones K. R., Reichardt L. F., Barbacid M. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell. 1991 Jul 26;66(2):395–403. doi: 10.1016/0092-8674(91)90628-c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Klesse L. J., Parada L. F. Trks: signal transduction and intracellular pathways. 1999 May 15-Jun 1Microsc Res Tech. 45(4-5):210–216. doi: 10.1002/(SICI)1097-0029(19990515/01)45:4/5<210::AID-JEMT4>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  26. Liman E. R., Tytgat J., Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron. 1992 Nov;9(5):861–871. doi: 10.1016/0896-6273(92)90239-a. [DOI] [PubMed] [Google Scholar]
  27. Livnah O., Johnson D. L., Stura E. A., Farrell F. X., Barbone F. P., You Y., Liu K. D., Goldsmith M. A., He W., Krause C. D. An antagonist peptide-EPO receptor complex suggests that receptor dimerization is not sufficient for activation. Nat Struct Biol. 1998 Nov;5(11):993–1004. doi: 10.1038/2965. [DOI] [PubMed] [Google Scholar]
  28. Livnah O., Stura E. A., Johnson D. L., Middleton S. A., Mulcahy L. S., Wrighton N. C., Dower W. J., Jolliffe L. K., Wilson I. A. Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2.8 A. Science. 1996 Jul 26;273(5274):464–471. doi: 10.1126/science.273.5274.464. [DOI] [PubMed] [Google Scholar]
  29. Livnah O., Stura E. A., Middleton S. A., Johnson D. L., Jolliffe L. K., Wilson I. A. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science. 1999 Feb 12;283(5404):987–990. doi: 10.1126/science.283.5404.987. [DOI] [PubMed] [Google Scholar]
  30. Loeb D. M., Stephens R. M., Copeland T., Kaplan D. R., Greene L. A. A Trk nerve growth factor (NGF) receptor point mutation affecting interaction with phospholipase C-gamma 1 abolishes NGF-promoted peripherin induction but not neurite outgrowth. J Biol Chem. 1994 Mar 25;269(12):8901–8910. [PubMed] [Google Scholar]
  31. Maliartchouk S., Debeir T., Beglova N., Cuello A. C., Gehring K., Saragovi H. U. Genuine monovalent ligands of TrkA nerve growth factor receptors reveal a novel pharmacological mechanism of action. J Biol Chem. 2000 Apr 7;275(14):9946–9956. doi: 10.1074/jbc.275.14.9946. [DOI] [PubMed] [Google Scholar]
  32. Maliartchouk S., Feng Y., Ivanisevic L., Debeir T., Cuello A. C., Burgess K., Saragovi H. U. A designed peptidomimetic agonistic ligand of TrkA nerve growth factor receptors. Mol Pharmacol. 2000 Feb;57(2):385–391. [PubMed] [Google Scholar]
  33. McDonald N. Q., Lapatto R., Murray-Rust J., Gunning J., Wlodawer A., Blundell T. L. New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature. 1991 Dec 5;354(6352):411–414. doi: 10.1038/354411a0. [DOI] [PubMed] [Google Scholar]
  34. Meakin S. O., Shooter E. M. Molecular investigations on the high-affinity nerve growth factor receptor. Neuron. 1991 Jan;6(1):153–163. doi: 10.1016/0896-6273(91)90130-r. [DOI] [PubMed] [Google Scholar]
  35. Mischel P. S., Smith S. G., Vining E. R., Valletta J. S., Mobley W. C., Reichardt L. F. The extracellular domain of p75NTR is necessary to inhibit neurotrophin-3 signaling through TrkA. J Biol Chem. 2001 Jan 9;276(14):11294–11301. doi: 10.1074/jbc.M005132200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nebreda A. R., Martin-Zanca D., Kaplan D. R., Parada L. F., Santos E. Induction by NGF of meiotic maturation of Xenopus oocytes expressing the trk proto-oncogene product. Science. 1991 Apr 26;252(5005):558–561. doi: 10.1126/science.1850550. [DOI] [PubMed] [Google Scholar]
  37. Obermeier A., Halfter H., Wiesmüller K. H., Jung G., Schlessinger J., Ullrich A. Tyrosine 785 is a major determinant of Trk--substrate interaction. EMBO J. 1993 Mar;12(3):933–941. doi: 10.1002/j.1460-2075.1993.tb05734.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Remy I., Wilson I. A., Michnick S. W. Erythropoietin receptor activation by a ligand-induced conformation change. Science. 1999 Feb 12;283(5404):990–993. doi: 10.1126/science.283.5404.990. [DOI] [PubMed] [Google Scholar]
  39. Schlessinger J., Ullrich A. Growth factor signaling by receptor tyrosine kinases. Neuron. 1992 Sep;9(3):383–391. doi: 10.1016/0896-6273(92)90177-f. [DOI] [PubMed] [Google Scholar]
  40. Segal R. A., Greenberg M. E. Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci. 1996;19:463–489. doi: 10.1146/annurev.ne.19.030196.002335. [DOI] [PubMed] [Google Scholar]
  41. Sehgal A., Wall D. A., Chao M. V. Efficient processing and expression of human nerve growth factor receptors in Xenopus laevis oocytes: effects on maturation. Mol Cell Biol. 1988 May;8(5):2242–2246. doi: 10.1128/mcb.8.5.2242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sternberg M. J., Gullick W. J. A sequence motif in the transmembrane region of growth factor receptors with tyrosine kinase activity mediates dimerization. Protein Eng. 1990 Mar;3(4):245–248. doi: 10.1093/protein/3.4.245. [DOI] [PubMed] [Google Scholar]
  43. Treanor J. J., Schmelzer C., Knusel B., Winslow J. W., Shelton D. L., Hefti F., Nikolics K., Burton L. E. Heterodimeric neurotrophins induce phosphorylation of Trk receptors and promote neuronal differentiation in PC12 cells. J Biol Chem. 1995 Sep 29;270(39):23104–23110. doi: 10.1074/jbc.270.39.23104. [DOI] [PubMed] [Google Scholar]
  44. Umbach J. A., Grasso A., Gundersen C. B. Alpha-latrotoxin triggers an increase of ionized calcium in Xenopus oocytes injected with rat brain mRNA. Brain Res Mol Brain Res. 1990 Jun;8(1):31–36. doi: 10.1016/0169-328x(90)90006-y. [DOI] [PubMed] [Google Scholar]
  45. Umbach J. A., Gundersen C. B. Expression of an omega-conotoxin-sensitive calcium channel in Xenopus oocytes injected with mRNA from Torpedo electric lobe. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5464–5468. doi: 10.1073/pnas.84.15.5464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Weber W. M. Endogenous ion channels in oocytes of xenopus laevis: recent developments. J Membr Biol. 1999 Jul 1;170(1):1–12. doi: 10.1007/s002329900532. [DOI] [PubMed] [Google Scholar]
  47. Wiesmann C., Ultsch M. H., Bass S. H., de Vos A. M. Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature. 1999 Sep 9;401(6749):184–188. doi: 10.1038/43705. [DOI] [PubMed] [Google Scholar]
  48. Wion D., Dicou E., Brachet P. Synthesis and partial maturation of the alpha- and gamma-subunits of the mouse submaxillary gland nerve growth factor in Xenopus laevis oocytes. FEBS Lett. 1984 Jan 23;166(1):104–108. doi: 10.1016/0014-5793(84)80053-8. [DOI] [PubMed] [Google Scholar]
  49. Wiseman P. W., Petersen N. O. Image correlation spectroscopy. II. Optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells. Biophys J. 1999 Feb;76(2):963–977. doi: 10.1016/S0006-3495(99)77260-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Woo S. B., Whalen C., Neet K. E. Characterization of the recombinant extracellular domain of the neurotrophin receptor TrkA and its interaction with nerve growth factor (NGF). Protein Sci. 1998 Apr;7(4):1006–1016. doi: 10.1002/pro.5560070418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zaccaro M. C., Ivanisevic L., Perez P., Meakin S. O., Saragovi H. U. p75 Co-receptors regulate ligand-dependent and ligand-independent Trk receptor activation, in part by altering Trk docking subdomains. J Biol Chem. 2001 Jun 25;276(33):31023–31029. doi: 10.1074/jbc.M104630200. [DOI] [PubMed] [Google Scholar]
  52. Zampighi G. A., Kreman M., Boorer K. J., Loo D. D., Bezanilla F., Chandy G., Hall J. E., Wright E. M. A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes. J Membr Biol. 1995 Nov;148(1):65–78. doi: 10.1007/BF00234157. [DOI] [PubMed] [Google Scholar]
  53. Zampighi G. A., Loo D. D., Kreman M., Eskandari S., Wright E. M. Functional and morphological correlates of connexin50 expressed in Xenopus laevis oocytes. J Gen Physiol. 1999 Apr;113(4):507–524. doi: 10.1085/jgp.113.4.507. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES