Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Aug;83(2):994–1003. doi: 10.1016/S0006-3495(02)75225-9

Structural transitions in short-chain lipid assemblies studied by (31)P-NMR spectroscopy.

Jörg H Kleinschmidt 1, Lukas K Tamm 1
PMCID: PMC1302203  PMID: 12124281

Abstract

The self-assembled supramolecular structures of diacylphosphatidylcholine (diC(n)PC), diacylphosphatidylethanolamine (diC(n)PE), diacylphosphatidyglycerol (diC(n)PG), and diacylphosphatidylserine (diC(n)PS) were investigated by (31)P nuclear magnetic resonance (NMR) spectroscopy as a function of the hydrophobic acyl chain length. Short-chain homologs of these lipids formed micelles, and longer-chain homologs formed bilayers. The shortest acyl chain lengths that supported bilayer structures depended on the headgroup of the lipids. They increased in the order PE (C(6)) < PC (C(9)) < or = PS (C(9) or C(10)) < PG (C(11) or C(12)). This order correlated with the effective headgroup area, which is a function of the physical size, charge, hydration, and hydrogen-bonding capacity of the four headgroups. Electrostatic screening of the headgroup charge with NaCl reduced the effective headgroup area of PS and PG and thereby decreased the micelle-to-bilayer transition of these lipid classes to shorter chain lengths. The experimentally determined supramolecular structures were compared to the assembly states predicted by packing constraints that were calculated from the hydrocarbon-chain volume and effective headgroup area of each lipid. The model accurately predicted the chain-length threshold for bilayer formation if the relative displacement of the acyl chains of the phospholipid were taken into account. The model also predicted cylindrical rather than spherical micelles for all four diacylphospholipid classes and the (31)P-NMR spectra provided evidence for a tubular network that appeared as an intermediate phase at the micelle-to-bilayer transition. The free energy of micellization per methylene group was independent of the structure of the supramolecular assembly, but was -0.95 kJ/mol (-0.23 kcal/mol) for the PGs compared to -2.5 kJ/mol (-0.60 kcal/mol) for the PCs. The integral membrane protein OmpA did not change the bilayer structure of thin (diC(10)PC) bilayers.

Full Text

The Full Text of this article is available as a PDF (378.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arora A., Abildgaard F., Bushweller J. H., Tamm L. K. Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Biol. 2001 Apr;8(4):334–338. doi: 10.1038/86214. [DOI] [PubMed] [Google Scholar]
  2. Arora A., Rinehart D., Szabo G., Tamm L. K. Refolded outer membrane protein A of Escherichia coli forms ion channels with two conductance states in planar lipid bilayers. J Biol Chem. 2000 Jan 21;275(3):1594–1600. doi: 10.1074/jbc.275.3.1594. [DOI] [PubMed] [Google Scholar]
  3. Bax A., Kontaxis G., Tjandra N. Dipolar couplings in macromolecular structure determination. Methods Enzymol. 2001;339:127–174. doi: 10.1016/s0076-6879(01)39313-8. [DOI] [PubMed] [Google Scholar]
  4. Cornea R. L., Thomas D. D. Effects of membrane thickness on the molecular dynamics and enzymatic activity of reconstituted Ca-ATPase. Biochemistry. 1994 Mar 15;33(10):2912–2920. doi: 10.1021/bi00176a022. [DOI] [PubMed] [Google Scholar]
  5. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  6. Dempsey C. E., Sternberg B. Reversible disc-micellization of dimyristoylphosphatidylcholine bilayers induced by melittin and [Ala-14]melittin. Biochim Biophys Acta. 1991 Jan 30;1061(2):175–184. doi: 10.1016/0005-2736(91)90283-e. [DOI] [PubMed] [Google Scholar]
  7. Dumas F., Tocanne J. F., Leblanc G., Lebrun M. C. Consequences of hydrophobic mismatch between lipids and melibiose permease on melibiose transport. Biochemistry. 2000 Apr 25;39(16):4846–4854. doi: 10.1021/bi992634s. [DOI] [PubMed] [Google Scholar]
  8. Fernández C., Adeishvili K., Wüthrich K. Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Proc Natl Acad Sci U S A. 2001 Feb 20;98(5):2358–2363. doi: 10.1073/pnas.051629298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Galbraith T. P., Wallace B. A. Phospholipid chain length alters the equilibrium between pore and channel forms of gramicidin. Faraday Discuss. 1998;(111):159–246. doi: 10.1039/a808270g. [DOI] [PubMed] [Google Scholar]
  10. Hauser H. Short-chain phospholipids as detergents. Biochim Biophys Acta. 2000 Nov 23;1508(1-2):164–181. doi: 10.1016/s0304-4157(00)00008-3. [DOI] [PubMed] [Google Scholar]
  11. Heerklotz H., Epand R. M. The enthalpy of acyl chain packing and the apparent water-accessible apolar surface area of phospholipids. Biophys J. 2001 Jan;80(1):271–279. doi: 10.1016/S0006-3495(01)76012-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Helenius A., McCaslin D. R., Fries E., Tanford C. Properties of detergents. Methods Enzymol. 1979;56:734–749. doi: 10.1016/0076-6879(79)56066-2. [DOI] [PubMed] [Google Scholar]
  13. Hitchcock P. B., Mason R., Thomas K. M., Shipley G. G. Structural chemistry of 1,2 dilauroyl-DL-phosphatidylethanolamine: molecular conformation and intermolecular packing of phospholipids. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3036–3040. doi: 10.1073/pnas.71.8.3036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Israelachvili J. N., Mitchell D. J., Ninham B. W. Theory of self-assembly of lipid bilayers and vesicles. Biochim Biophys Acta. 1977 Oct 17;470(2):185–201. doi: 10.1016/0005-2736(77)90099-2. [DOI] [PubMed] [Google Scholar]
  15. Kessi J., Poirée J. C., Wehrli E., Bachofen R., Semenza G., Hauser H. Short-chain phosphatidylcholines as superior detergents in solubilizing membrane proteins and preserving biological activity. Biochemistry. 1994 Sep 6;33(35):10825–10836. doi: 10.1021/bi00201a033. [DOI] [PubMed] [Google Scholar]
  16. Killian J. A. Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):401–415. doi: 10.1016/s0304-4157(98)00017-3. [DOI] [PubMed] [Google Scholar]
  17. Kleinschmidt J. H., Mahaney J. E., Thomas D. D., Marsh D. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study. Biophys J. 1997 Feb;72(2 Pt 1):767–778. doi: 10.1016/s0006-3495(97)78711-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kleinschmidt J. H., Tamm L. K. Folding intermediates of a beta-barrel membrane protein. Kinetic evidence for a multi-step membrane insertion mechanism. Biochemistry. 1996 Oct 8;35(40):12993–13000. doi: 10.1021/bi961478b. [DOI] [PubMed] [Google Scholar]
  19. Kleinschmidt J. H., Wiener M. C., Tamm L. K. Outer membrane protein A of E. coli folds into detergent micelles, but not in the presence of monomeric detergent. Protein Sci. 1999 Oct;8(10):2065–2071. doi: 10.1110/ps.8.10.2065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knoll W., Ibel K., Sackmann E. Small-angle neutron scattering study of lipid phase diagrams by the contrast variation method. Biochemistry. 1981 Oct 27;20(22):6379–6383. doi: 10.1021/bi00525a015. [DOI] [PubMed] [Google Scholar]
  21. Koynova R., Hinz H. J. Metastable behaviour of saturated phosphatidylethanolamines: a densitometric study. Chem Phys Lipids. 1990 Apr;54(1):67–72. doi: 10.1016/0009-3084(90)90061-u. [DOI] [PubMed] [Google Scholar]
  22. Marassi F. M., Ma C., Gratkowski H., Straus S. K., Strebel K., Oblatt-Montal M., Montal M., Opella S. J. Correlation of the structural and functional domains in the membrane protein Vpu from HIV-1. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14336–14341. doi: 10.1073/pnas.96.25.14336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mattai J., Hauser H., Demel R. A., Shipley G. G. Interactions of metal ions with phosphatidylserine bilayer membranes: effect of hydrocarbon chain unsaturation. Biochemistry. 1989 Mar 7;28(5):2322–2330. doi: 10.1021/bi00431a051. [DOI] [PubMed] [Google Scholar]
  24. Morein S., Andersson A., Rilfors L., Lindblom G. Wild-type Escherichia coli cells regulate the membrane lipid composition in a "window" between gel and non-lamellar structures. J Biol Chem. 1996 Mar 22;271(12):6801–6809. doi: 10.1074/jbc.271.12.6801. [DOI] [PubMed] [Google Scholar]
  25. Nagle J. F., Wilkinson D. A. Lecithin bilayers. Density measurement and molecular interactions. Biophys J. 1978 Aug;23(2):159–175. doi: 10.1016/S0006-3495(78)85441-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pautsch A., Schulz G. E. High-resolution structure of the OmpA membrane domain. J Mol Biol. 2000 Apr 28;298(2):273–282. doi: 10.1006/jmbi.2000.3671. [DOI] [PubMed] [Google Scholar]
  27. Pearson R. H., Pascher I. The molecular structure of lecithin dihydrate. Nature. 1979 Oct 11;281(5731):499–501. doi: 10.1038/281499a0. [DOI] [PubMed] [Google Scholar]
  28. Röpke M., Unmack M. A., Willumsen N. J., Frederiksen O. Comparative aspects of actions of a short-chain phospholipid on epithelial Na+ channels and tight junction conductance. Comp Biochem Physiol A Physiol. 1997 Oct;118(2):211–214. doi: 10.1016/s0300-9629(97)00069-8. [DOI] [PubMed] [Google Scholar]
  29. Sanders C. R., Oxenoid K. Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins. Biochim Biophys Acta. 2000 Nov 23;1508(1-2):129–145. doi: 10.1016/s0005-2736(00)00308-4. [DOI] [PubMed] [Google Scholar]
  30. Schlame M., Haupt R., Wiswedel I., Kox W. J., Rüstow B. Identification of short-chain oxidized phosphatidylcholine in human plasma. J Lipid Res. 1996 Dec;37(12):2608–2615. [PubMed] [Google Scholar]
  31. Seddon J. M., Cevc G., Kaye R. D., Marsh D. X-ray diffraction study of the polymorphism of hydrated diacyl- and dialkylphosphatidylethanolamines. Biochemistry. 1984 Jun 5;23(12):2634–2644. doi: 10.1021/bi00307a015. [DOI] [PubMed] [Google Scholar]
  32. Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta. 1978 Jul 31;515(2):105–140. doi: 10.1016/0304-4157(78)90001-1. [DOI] [PubMed] [Google Scholar]
  33. Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980 Feb;13(1):19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]
  34. Sen A., Yang P. W., Mantsch H. H., Hui S. W. Extended hydrogen-bonded structures of phosphatidylethanolamine. Chem Phys Lipids. 1988 Jun;47(2):109–116. doi: 10.1016/0009-3084(88)90079-5. [DOI] [PubMed] [Google Scholar]
  35. Shin T. B., Leventis R., Silvius J. R. Partitioning of fluorescent phospholipid probes between different bilayer environments. Estimation of the free energy of interlipid hydrogen bonding. Biochemistry. 1991 Jul 30;30(30):7491–7497. doi: 10.1021/bi00244a018. [DOI] [PubMed] [Google Scholar]
  36. Slater S. J., Ho C., Taddeo F. J., Kelly M. B., Stubbs C. D. Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol. Biochemistry. 1993 Apr 13;32(14):3714–3721. doi: 10.1021/bi00065a025. [DOI] [PubMed] [Google Scholar]
  37. Surrey T., Jähnig F. Refolding and oriented insertion of a membrane protein into a lipid bilayer. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7457–7461. doi: 10.1073/pnas.89.16.7457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tamm L. K., Seelig J. Lipid solvation of cytochrome c oxidase. Deuterium, nitrogen-14, and phosphorus-31 nuclear magnetic resonance studies on the phosphocholine head group and on cis-unsaturated fatty acyl chains. Biochemistry. 1983 Mar 15;22(6):1474–1483. doi: 10.1021/bi00275a023. [DOI] [PubMed] [Google Scholar]
  39. Tate M. W., Gruner S. M. Temperature dependence of the structural dimensions of the inverted hexagonal (HII) phase of phosphatidylethanolamine-containing membranes. Biochemistry. 1989 May 16;28(10):4245–4253. doi: 10.1021/bi00436a019. [DOI] [PubMed] [Google Scholar]
  40. Tausk R. J., Karmiggelt J., Oudshoorn C., Overbeek J. T. Physical chemical studies of short-chain lecithin homologues. I. Influence of the chain length of the fatty acid ester and of electrolytes on the critical micelle concentration. Biophys Chem. 1974 Feb;1(3):175–183. doi: 10.1016/0301-4622(74)80004-9. [DOI] [PubMed] [Google Scholar]
  41. Tausk R. J., Oudshoorn C., Overbeek J. T. Physical chemical studies of short-chain lecithin homologues. 3. Phase separation and light scattering studies on aqueous dioctanoyllecithin solutions. Biophys Chem. 1974 Jun;2(1):53–63. doi: 10.1016/0301-4622(74)80024-4. [DOI] [PubMed] [Google Scholar]
  42. Tausk R. J., van Esch J., Karmiggelt J., Voordouw G., Overbeek J. T. Physical chemical studies of short-chain lecithin homologues. II. Micellar weights of dihexanoyl- and diheptanoyllecithin. Biophys Chem. 1974 Feb;1(3):184–203. doi: 10.1016/0301-4622(74)80005-0. [DOI] [PubMed] [Google Scholar]
  43. Watts A., Harlos K., Marsh D. Charge-induced tilt in ordered-phase phosphatidylglycerol bilayers evidence from X-ray diffraction. Biochim Biophys Acta. 1981 Jul 6;645(1):91–96. doi: 10.1016/0005-2736(81)90515-0. [DOI] [PubMed] [Google Scholar]
  44. Wiener M. C., Tristram-Nagle S., Wilkinson D. A., Campbell L. E., Nagle J. F. Specific volumes of lipids in fully hydrated bilayer dispersions. Biochim Biophys Acta. 1988 Feb 18;938(2):135–142. doi: 10.1016/0005-2736(88)90153-8. [DOI] [PubMed] [Google Scholar]
  45. Yeagle P. L., Romans A. Y. The glycophorin-phospholipid interface in recombined systems. A 31P-nuclear magnetic resonance study. Biophys J. 1981 Feb;33(2):243–252. doi: 10.1016/S0006-3495(81)84885-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zhang Y. P., Lewis R. N., McElhaney R. N. Calorimetric and spectroscopic studies of the thermotropic phase behavior of the n-saturated 1,2-diacylphosphatidylglycerols. Biophys J. 1997 Feb;72(2 Pt 1):779–793. doi: 10.1016/s0006-3495(97)78712-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES