Abstract
Pardaxin is a membrane-lysing peptide originally isolated from the fish Pardachirus marmoratus. The effect of the carboxy-amide of pardaxin (P1a) on bilayers of varying composition was studied using (15)N and (31)P solid-state NMR of mechanically aligned samples and differential scanning calorimetry (DSC). (15)N NMR spectroscopy of [(15)N-Leu(19)]P1a found that the orientation of the peptide's C-terminal helix depends on membrane composition. It is located on the surface of lipid bilayers composed of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and is inserted in lipid bilayers composed of 1,2-dimyristoyl-phosphatidylcholine (DMPC). The former suggests a carpet mechanism for bilayer disruption whereas the latter is consistent with a barrel-stave mechanism. The (31)P chemical shift NMR spectra showed that the peptide significantly disrupts lipid bilayers composed solely of zwitterionic lipids, particularly bilayers composed of POPC, in agreement with a carpet mechanism. P1a caused the formation of an isotropic phase in 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) lipid bilayers. This, combined with DSC data that found P1a reduced the fluid lamellar-to-inverted hexagonal phase transition temperature at very low concentrations (1:50,000), is interpreted as the formation of a cubic phase and not micellization of the membrane. Experiments exploring the effect of P1a on lipid bilayers composed of 4:1 POPC:cholesterol, 4:1 POPE:cholesterol, 3:1 POPC:1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), and 3:1 POPE:POPG were also conducted, and the presence of anionic lipids or cholesterol was found to reduce the peptide's ability to disrupt bilayers. Considered together, these data demonstrate that the mechanism of P1a is dependent on membrane composition.
Full Text
The Full Text of this article is available as a PDF (213.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adermann K., Raida M., Paul Y., Abu-Raya S., Bloch-Shilderman E., Lazarovici P., Hochman J., Wellhöner H. Isolation, characterization and synthesis of a novel paradaxin isoform. FEBS Lett. 1998 Sep 18;435(2-3):173–177. doi: 10.1016/s0014-5793(98)01057-6. [DOI] [PubMed] [Google Scholar]
- Bechinger B., Kinder R., Helmle M., Vogt T. C., Harzer U., Schinzel S. Peptide structural analysis by solid-state NMR spectroscopy. Biopolymers. 1999;51(3):174–190. doi: 10.1002/(SICI)1097-0282(1999)51:3<174::AID-BIP2>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
- Bechinger B. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr Biol. 1997 Apr 1;156(3):197–211. doi: 10.1007/s002329900201. [DOI] [PubMed] [Google Scholar]
- Cotten M., Soghomonian V. G., Hu W., Cross T. A. High resolution and high fields in biological solid state NMR. Solid State Nucl Magn Reson. 1997 Nov;9(1):77–80. doi: 10.1016/s0926-2040(97)00046-5. [DOI] [PubMed] [Google Scholar]
- Epand R. M. Lipid polymorphism and protein-lipid interactions. Biochim Biophys Acta. 1998 Nov 10;1376(3):353–368. doi: 10.1016/s0304-4157(98)00015-x. [DOI] [PubMed] [Google Scholar]
- Feigin A. M., Teeter J. H., Brand J. G. The influence of sterols on the sensitivity of lipid bilayers to melittin. Biochem Biophys Res Commun. 1995 Jun 6;211(1):312–317. doi: 10.1006/bbrc.1995.1812. [DOI] [PubMed] [Google Scholar]
- Gasset M., Killian J. A., Tournois H., de Kruijff B. Influence of cholesterol on gramicidin-induced HII phase formation in phosphatidylcholine model membranes. Biochim Biophys Acta. 1988 Mar 22;939(1):79–88. doi: 10.1016/0005-2736(88)90049-1. [DOI] [PubMed] [Google Scholar]
- Giacometti A., Cirioni O., Ghiselli R., Goffi L., Mocchegiani F., Riva A., Scalise G., Saba V. Efficacy of polycationic peptides in preventing vascular graft infection due to Staphylococcus epidermidis. J Antimicrob Chemother. 2000 Nov;46(5):751–756. doi: 10.1093/jac/46.5.751. [DOI] [PubMed] [Google Scholar]
- Gruner S. M. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3665–3669. doi: 10.1073/pnas.82.11.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hallock Kevin J., Henzler Wildman Katherine, Lee Dong-Kuk, Ramamoorthy Ayyalusamy. An innovative procedure using a sublimable solid to align lipid bilayers for solid-state NMR studies. Biophys J. 2002 May;82(5):2499–2503. doi: 10.1016/S0006-3495(02)75592-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harzer U., Bechinger B. Alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: a CD, 15N and 31P solid-state NMR spectroscopy investigation. Biochemistry. 2000 Oct 31;39(43):13106–13114. doi: 10.1021/bi000770n. [DOI] [PubMed] [Google Scholar]
- Hincha D. K., Crowe J. H. The lytic activity of the bee venom peptide melittin is strongly reduced by the presence of negatively charged phospholipids or chloroplast galactolipids in the membranes of phosphatidylcholine large unilamellar vesicles. Biochim Biophys Acta. 1996 Oct 23;1284(2):162–170. doi: 10.1016/s0005-2736(96)00122-8. [DOI] [PubMed] [Google Scholar]
- Ketchem R. R., Hu W., Cross T. A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science. 1993 Sep 10;261(5127):1457–1460. doi: 10.1126/science.7690158. [DOI] [PubMed] [Google Scholar]
- Lazarovici P., Primor N., Loew L. M. Purification and pore-forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole (Pardachirus marmoratus). J Biol Chem. 1986 Dec 15;261(35):16704–16713. [PubMed] [Google Scholar]
- Lee D. K., Ramamoorthy A. A simple one-dimensional solid-state NMR method to characterize the nuclear spin interaction tensors associated with the peptide bond. J Magn Reson. 1998 Jul;133(1):204–206. doi: 10.1006/jmre.1998.1442. [DOI] [PubMed] [Google Scholar]
- Liu F., Lewis R. N., Hodges R. S., McElhaney R. N. A differential scanning calorimetric and 31P NMR spectroscopic study of the effect of transmembrane alpha-helical peptides on the lamellar-reversed hexagonal phase transition of phosphatidylethanolamine model membranes. Biochemistry. 2001 Jan 23;40(3):760–768. doi: 10.1021/bi001942j. [DOI] [PubMed] [Google Scholar]
- Marassi F. M., Ramamoorthy A., Opella S. J. Complete resolution of the solid-state NMR spectrum of a uniformly 15N-labeled membrane protein in phospholipid bilayers. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8551–8556. doi: 10.1073/pnas.94.16.8551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuzaki K., Sugishita K., Fujii N., Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry. 1995 Mar 14;34(10):3423–3429. doi: 10.1021/bi00010a034. [DOI] [PubMed] [Google Scholar]
- Matsuzaki K., Sugishita K., Ishibe N., Ueha M., Nakata S., Miyajima K., Epand R. M. Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry. 1998 Aug 25;37(34):11856–11863. doi: 10.1021/bi980539y. [DOI] [PubMed] [Google Scholar]
- Oren Z., Shai Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem. 1996 Apr 1;237(1):303–310. doi: 10.1111/j.1432-1033.1996.0303n.x. [DOI] [PubMed] [Google Scholar]
- Primor N. Pharyngeal cavity and the gills are the target organ for the repellent action of pardaxin in shark. Experientia. 1985 May 15;41(5):693–695. doi: 10.1007/BF02007726. [DOI] [PubMed] [Google Scholar]
- Primor N., Zadunaisky J. A., Murdaugh H. V., Jr, Boyer J. L., Forrest J. N., Jr Pardaxin increases solute permeability of gills and rectal gland in the dogfish shark (Squalus acanthias). Comp Biochem Physiol C. 1984;78(2):483–490. doi: 10.1016/0742-8413(84)90119-1. [DOI] [PubMed] [Google Scholar]
- Rapaport D., Peled R., Nir S., Shai Y. Reversible surface aggregation in pore formation by pardaxin. Biophys J. 1996 Jun;70(6):2502–2512. doi: 10.1016/S0006-3495(96)79822-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapaport D., Shai Y. Aggregation and organization of pardaxin in phospholipid membranes. A fluorescence energy transfer study. J Biol Chem. 1992 Apr 5;267(10):6502–6509. [PubMed] [Google Scholar]
- Rapaport D., Shai Y. Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers. J Biol Chem. 1991 Dec 15;266(35):23769–23775. [PubMed] [Google Scholar]
- Shai Y., Bach D., Yanovsky A. Channel formation properties of synthetic pardaxin and analogues. J Biol Chem. 1990 Nov 25;265(33):20202–20209. [PubMed] [Google Scholar]
- Shai Y., Fox J., Caratsch C., Shih Y. L., Edwards C., Lazarovici P. Sequencing and synthesis of pardaxin, a polypeptide from the Red Sea Moses sole with ionophore activity. FEBS Lett. 1988 Dec 19;242(1):161–166. doi: 10.1016/0014-5793(88)81007-x. [DOI] [PubMed] [Google Scholar]
- Shai Y., Hadari Y. R., Finkels A. pH-dependent pore formation properties of pardaxin analogues. J Biol Chem. 1991 Nov 25;266(33):22346–22354. [PubMed] [Google Scholar]
- Shai Y. Pardaxin: channel formation by a shark repellant peptide from fish. Toxicology. 1994 Feb 28;87(1-3):109–129. doi: 10.1016/0300-483x(94)90157-0. [DOI] [PubMed] [Google Scholar]
- Siegel D. P. The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. Biophys J. 1999 Jan;76(1 Pt 1):291–313. doi: 10.1016/S0006-3495(99)77197-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thayer A. M., Kohler S. J. Phosphorus-31 nuclear magnetic resonance spectra characteristic of hexagonal and isotropic phospholipid phases generated from phosphatidylethanolamine in the bilayer phase. Biochemistry. 1981 Nov 24;20(24):6831–6834. doi: 10.1021/bi00527a014. [DOI] [PubMed] [Google Scholar]
- Thompson S. A., Tachibana K., Nakanishi K., Kubota I. Melittin-Like Peptides from the Shark-Repelling Defense Secretion of the Sole Pardachirus pavoninus. Science. 1986 Jul 18;233(4761):341–343. doi: 10.1126/science.233.4761.341. [DOI] [PubMed] [Google Scholar]
- Tytler E. M., Anantharamaiah G. M., Walker D. E., Mishra V. K., Palgunachari M. N., Segrest J. P. Molecular basis for prokaryotic specificity of magainin-induced lysis. Biochemistry. 1995 Apr 4;34(13):4393–4401. doi: 10.1021/bi00013a031. [DOI] [PubMed] [Google Scholar]
- Zagorski M. G., Norman D. G., Barrow C. J., Iwashita T., Tachibana K., Patel D. J. Solution structure of pardaxin P-2. Biochemistry. 1991 Aug 13;30(32):8009–8017. doi: 10.1021/bi00246a019. [DOI] [PubMed] [Google Scholar]