Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Aug;83(2):1074–1081. doi: 10.1016/S0006-3495(02)75231-4

Direct x-ray observation of a single hexagonal myofilament lattice in native myofibrils of striated muscle.

Hiroyuki Iwamoto 1, Yukihiro Nishikawa 1, Jun'ichi Wakayama 1, Tetsuro Fujisawa 1
PMCID: PMC1302209  PMID: 12124287

Abstract

A striated muscle fiber consists of thousands of myofibrils with crystalline hexagonal myofilament lattices. Because the lattices are randomly oriented, the fiber gives rise to an equatorial x-ray diffraction pattern, which is essentially a rotary-averaged "powder diffraction," carrying only information about the distance between the lattice planes. We were able to record an x-ray diffraction pattern from a single myofilament lattice, very likely originating from a single myofibril from the flight muscle of a bumblebee, by orienting the incident x-ray microbeam along the myofibrillar axis (end-on diffraction). The pattern consisted of a number of hexagonally symmetrical diffraction spots whose originating lattice planes were readily identified. This also held true for some of the weak higher order reflections. The spot-like appearance of reflections implies that the lattice order is extremely well maintained for a distance of millimeters, covering up to a thousand of approximately 2.5-microm-long sarcomeres connected in series. The results open the possibility of applying the x-ray microdiffraction technique to study many other micrometer-sized assemblies of functional biomolecules in the cell.

Full Text

The Full Text of this article is available as a PDF (630.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amemiya Y., Wakabayashi K. Imaging plate and its application to X-ray diffraction of muscle. Adv Biophys. 1991;27:115–126. doi: 10.1016/0065-227x(91)90012-3. [DOI] [PubMed] [Google Scholar]
  2. Ashhurst D. E. The Z-line in insect flight muscle. J Mol Biol. 1971 Jan 28;55(2):283–285. doi: 10.1016/0022-2836(71)90199-9. [DOI] [PubMed] [Google Scholar]
  3. Ashhurst D. E. Z-line of the flight muscle of belostomatid water bugs. J Mol Biol. 1967 Jul 28;27(2):385–389. doi: 10.1016/0022-2836(67)90027-7. [DOI] [PubMed] [Google Scholar]
  4. Bordas J., Diakun G. P., Harries J. E., Lewis R. A., Mant G. R., Martin-Fernandez M. L., Towns-Andrews E. Two-dimensional time resolved X-ray diffraction of muscle: recent results. Adv Biophys. 1991;27:15–33. doi: 10.1016/0065-227x(91)90005-x. [DOI] [PubMed] [Google Scholar]
  5. Deatherage J. F., Cheng N. Q., Bullard B. Arrangement of filaments and cross-links in the bee flight muscle Z disk by image analysis of oblique sections. J Cell Biol. 1989 May;108(5):1775–1782. doi: 10.1083/jcb.108.5.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elliott G. F., Lowy J., Millman B. M. Low-angle x-ray diffraction studies of living striated muscle during contraction. J Mol Biol. 1967 Apr 14;25(1):31–45. doi: 10.1016/0022-2836(67)90277-x. [DOI] [PubMed] [Google Scholar]
  7. HUXLEY H. E. X-ray analysis and the problem of muscle. Proc R Soc Lond B Biol Sci. 1953 Mar 11;141(902):59–62. doi: 10.1098/rspb.1953.0017. [DOI] [PubMed] [Google Scholar]
  8. Hanson J. Recent x-ray diffraction studies of muscle. Q Rev Biophys. 1968 Jun;1(2):177–216. doi: 10.1017/s0033583500000536. [DOI] [PubMed] [Google Scholar]
  9. Haselgrove J. C., Huxley H. E. X-ray evidence for radial cross-bridge movement and for the sliding filament model in actively contracting skeletal muscle. J Mol Biol. 1973 Jul 15;77(4):549–568. doi: 10.1016/0022-2836(73)90222-2. [DOI] [PubMed] [Google Scholar]
  10. Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
  11. Huxley H. E., Faruqi A. R. Time-resolved X-ray diffraction studies on vertebrate striated muscle. Annu Rev Biophys Bioeng. 1983;12:381–417. doi: 10.1146/annurev.bb.12.060183.002121. [DOI] [PubMed] [Google Scholar]
  12. Huxley H. E. Structural difference between resting and rigor muscle; evidence from intensity changes in the lowangle equatorial x-ray diagram. J Mol Biol. 1968 Nov 14;37(3):507–520. doi: 10.1016/0022-2836(68)90118-6. [DOI] [PubMed] [Google Scholar]
  13. Irving T. C., Millman B. M. Z-line/I-band and A-band lattices of intact frog sartorius muscle at altered interfilament spacing. J Muscle Res Cell Motil. 1992 Feb;13(1):100–105. doi: 10.1007/BF01738433. [DOI] [PubMed] [Google Scholar]
  14. Iwamoto H. Evidence for increased low force cross-bridge population in shortening skinned skeletal muscle fibers: implications for actomyosin kinetics. Biophys J. 1995 Sep;69(3):1022–1035. doi: 10.1016/S0006-3495(95)79977-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Iwamoto H., Oiwa K., Suzuki T., Fujisawa T. X-ray diffraction evidence for the lack of stereospecific protein interactions in highly activated actomyosin complex. J Mol Biol. 2001 Jan 26;305(4):863–874. doi: 10.1006/jmbi.2000.4334. [DOI] [PubMed] [Google Scholar]
  16. Luther P. K., Squire J. M. Three-dimensional structure of the vertebrate muscle A-band. II. The myosin filament superlattice. J Mol Biol. 1980 Aug 25;141(4):409–439. doi: 10.1016/0022-2836(80)90254-5. [DOI] [PubMed] [Google Scholar]
  17. Offer G., Couch J., O'Brien E., Elliott A. Arrangement of cross-bridges in insect flight muscle in rigor. J Mol Biol. 1981 Oct 5;151(4):663–702. doi: 10.1016/0022-2836(81)90429-0. [DOI] [PubMed] [Google Scholar]
  18. Popp D., Maeda Y., Stewart A. A., Holmes K. C. X-ray diffraction studies on muscle regulation. Adv Biophys. 1991;27:89–103. doi: 10.1016/0065-227x(91)90010-b. [DOI] [PubMed] [Google Scholar]
  19. Saide J. D., Ullrick W. C. Fine structure of the honeybee Z-disc. J Mol Biol. 1973 Sep 15;79(2):329–337. doi: 10.1016/0022-2836(73)90009-0. [DOI] [PubMed] [Google Scholar]
  20. Squire J. M., Morris E. P. A new look at thin filament regulation in vertebrate skeletal muscle. FASEB J. 1998 Jul;12(10):761–771. doi: 10.1096/fasebj.12.10.761. [DOI] [PubMed] [Google Scholar]
  21. Tregear R. T., Edwards R. J., Irving T. C., Poole K. J., Reedy M. C., Schmitz H., Towns-Andrews E., Reedy M. K. X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle. Biophys J. 1998 Mar;74(3):1439–1451. doi: 10.1016/S0006-3495(98)77856-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tregear R. T., Wakabayashi K., Tanaka H., Iwamoto H., Reedy M. C., Reedy M. K., Sugi H., Amemiya Y. X-ray diffraction and electron microscopy from Lethocerus flight muscle partially relaxed by adenylylimidodiphosphate and ethylene glycol. J Mol Biol. 1990 Jul 5;214(1):129–141. doi: 10.1016/0022-2836(90)90152-C. [DOI] [PubMed] [Google Scholar]
  23. Wray J. S., Holmes K. C. x-ray diffraction studies of muscle. Annu Rev Physiol. 1981;43:553–565. doi: 10.1146/annurev.ph.43.030181.003005. [DOI] [PubMed] [Google Scholar]
  24. Yu L. C., Lymn R. W., Podolsky R. J. Characterization of a non-indexible equatorial x-ray reflection from frog sartorius muscle. J Mol Biol. 1977 Sep 25;115(3):455–464. doi: 10.1016/0022-2836(77)90165-6. [DOI] [PubMed] [Google Scholar]
  25. Zotz R. J., Müller M., Genth-Zotz S., Darius H. Spontaneous echo contrast caused by platelet and leukocyte aggregates? Stroke. 2001 May;32(5):1127–1133. doi: 10.1161/01.str.32.5.1127. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES