Abstract
Pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a receptor of the negative phototaxis of Natronobacterium pharaonis. By spectroscopic titration of D193N and D193E mutants, the pK(a) of the Schiff base was evaluated. Asp193 corresponds to Glu204 of bacteriorhodopsin (bR). The pK(a) of the Schiff base (SBH(+)) of D193N was approximately 10.1-10.0 (at XH(+)) and approximately 11.4-11.6 (at X) depending on the protonation state of a certain residue (designated by X) and independent of Cl(-), whereas those of the wild type and D193E were >12. The pK(a) values of XH(+) were approximately 11.8-11.2 at the state of SB, 10.5 at SBH(+) state in the presence of Cl(-), and 9.6 at SBH(+) without Cl(-). These imply the presence of a long-range interaction in the extracellular channel. Asp193 was suggested to be deprotonated in the present dodecyl-maltoside (DDM) solubilized wild-type ppR, which is contrary to Glu204 of bR. In the absence of salts, the irreversible denaturation of D193N (but not the wild type and D193E) occurred via a metastable state, into which the addition of Cl(-) reversed the intact pigment. This suggests that the negative charge at residue 193, which can be substituted by Cl(-), is necessary to maintain the proper conformation in the DDM-solubilized ppR.
Full Text
The Full Text of this article is available as a PDF (125.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balashov S. P., Govindjee R., Imasheva E. S., Misra S., Ebrey T. G., Feng Y., Crouch R. K., Menick D. R. The two pKa's of aspartate-85 and control of thermal isomerization and proton release in the arginine-82 to lysine mutant of bacteriorhodopsin. Biochemistry. 1995 Jul 11;34(27):8820–8834. doi: 10.1021/bi00027a034. [DOI] [PubMed] [Google Scholar]
- Balashov S. P., Govindjee R., Kono M., Imasheva E., Lukashev E., Ebrey T. G., Crouch R. K., Menick D. R., Feng Y. Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle. Biochemistry. 1993 Oct 5;32(39):10331–10343. doi: 10.1021/bi00090a008. [DOI] [PubMed] [Google Scholar]
- Balashov S. P., Imasheva E. S., Govindjee R., Ebrey T. G. Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Biophys J. 1996 Jan;70(1):473–481. doi: 10.1016/S0006-3495(96)79591-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balashov S. P., Lu M., Imasheva E. S., Govindjee R., Ebrey T. G., Othersen B., 3rd, Chen Y., Crouch R. K., Menick D. R. The proton release group of bacteriorhodopsin controls the rate of the final step of its photocycle at low pH. Biochemistry. 1999 Feb 16;38(7):2026–2039. doi: 10.1021/bi981926a. [DOI] [PubMed] [Google Scholar]
- Bergo V., Spudich E. N., Scott K. L., Spudich J. L., Rothschild K. J. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Biochemistry. 2000 Mar 21;39(11):2823–2830. doi: 10.1021/bi991676d. [DOI] [PubMed] [Google Scholar]
- Bogomolni R. A., Spudich J. L. Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6250–6254. doi: 10.1073/pnas.79.20.6250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown L. S., Bonet L., Needleman R., Lanyi J. K. Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle. Biophys J. 1993 Jul;65(1):124–130. doi: 10.1016/S0006-3495(93)81064-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown L. S., Needleman R., Lanyi J. K. Interaction of proton and chloride transfer pathways in recombinant bacteriorhodopsin with chloride transport activity: implications for the chloride translocation mechanism. Biochemistry. 1996 Dec 17;35(50):16048–16054. doi: 10.1021/bi9622938. [DOI] [PubMed] [Google Scholar]
- Brown L. S., Sasaki J., Kandori H., Maeda A., Needleman R., Lanyi J. K. Glutamic acid 204 is the terminal proton release group at the extracellular surface of bacteriorhodopsin. J Biol Chem. 1995 Nov 10;270(45):27122–27126. doi: 10.1074/jbc.270.45.27122. [DOI] [PubMed] [Google Scholar]
- Chizhov I., Schmies G., Seidel R., Sydor J. R., Lüttenberg B., Engelhard M. The photophobic receptor from Natronobacterium pharaonis: temperature and pH dependencies of the photocycle of sensory rhodopsin II. Biophys J. 1998 Aug;75(2):999–1009. doi: 10.1016/S0006-3495(98)77588-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dioumaev A. K., Richter H. T., Brown L. S., Tanio M., Tuzi S., Saito H., Kimura Y., Needleman R., Lanyi J. K. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Biochemistry. 1998 Feb 24;37(8):2496–2506. doi: 10.1021/bi971842m. [DOI] [PubMed] [Google Scholar]
- Engelhard M., Scharf B., Siebert F. Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis. FEBS Lett. 1996 Oct 21;395(2-3):195–198. doi: 10.1016/0014-5793(96)01041-1. [DOI] [PubMed] [Google Scholar]
- Hirayama J., Imamoto Y., Shichida Y., Kamo N., Tomioka H., Yoshizawa T. Photocycle of phoborhodopsin from haloalkaliphilic bacterium (Natronobacterium pharaonis) studied by low-temperature spectrophotometry. Biochemistry. 1992 Feb 25;31(7):2093–2098. doi: 10.1021/bi00122a029. [DOI] [PubMed] [Google Scholar]
- Hirayama J., Imamoto Y., Shichida Y., Yoshizawa T., Asato A. E., Liu R. S., Kamo N. Shape of the chromophore binding site in pharaonis phoborhodopsin from a study using retinal analogs. Photochem Photobiol. 1994 Oct;60(4):388–393. doi: 10.1111/j.1751-1097.1994.tb05121.x. [DOI] [PubMed] [Google Scholar]
- Hirayma J., Kamo N., Imamoto Y., Shichida Y., Yoshizawa T. Reason for the lack of light-dark adaptation in pharaonis phoborhodopsin: reconstitution with 13-cis-retinal. FEBS Lett. 1995 May 8;364(2):168–170. doi: 10.1016/0014-5793(95)00381-i. [DOI] [PubMed] [Google Scholar]
- Hoff W. D., Jung K. H., Spudich J. L. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct. 1997;26:223–258. doi: 10.1146/annurev.biophys.26.1.223. [DOI] [PubMed] [Google Scholar]
- Hohenfeld I. P., Wegener A. A., Engelhard M. Purification of histidine tagged bacteriorhodopsin, pharaonis halorhodopsin and pharaonis sensory rhodopsin II functionally expressed in Escherichia coli. FEBS Lett. 1999 Jan 15;442(2-3):198–202. doi: 10.1016/s0014-5793(98)01659-7. [DOI] [PubMed] [Google Scholar]
- Iwamoto M., Shimono K., Sumi M., Kamo N. Positioning proton-donating residues to the Schiff-base accelerates the M-decay of pharaonis phoborhodopsin expressed in Escherichia coli. Biophys Chem. 1999 Jun 28;79(3):187–192. doi: 10.1016/s0301-4622(99)00054-x. [DOI] [PubMed] [Google Scholar]
- Luecke H., Schobert B., Lanyi J. K., Spudich E. N., Spudich J. L. Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction. Science. 2001 Jul 12;293(5534):1499–1503. doi: 10.1126/science.1062977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971 Sep 29;233(39):149–152. doi: 10.1038/newbio233149a0. [DOI] [PubMed] [Google Scholar]
- Richter H. T., Brown L. S., Needleman R., Lanyi J. K. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Biochemistry. 1996 Apr 2;35(13):4054–4062. doi: 10.1021/bi952883q. [DOI] [PubMed] [Google Scholar]
- Royant A., Nollert P., Edman K., Neutze R., Landau E. M., Pebay-Peyroula E., Navarro J. X-ray structure of sensory rhodopsin II at 2.1-A resolution. Proc Natl Acad Sci U S A. 2001 Aug 14;98(18):10131–10136. doi: 10.1073/pnas.181203898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki J., Spudich J. L. Proton circulation during the photocycle of sensory rhodopsin II. Biophys J. 1999 Oct;77(4):2145–2152. doi: 10.1016/S0006-3495(99)77055-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki J., Spudich J. L. Proton transport by sensory rhodopsins and its modulation by transducer-binding. Biochim Biophys Acta. 2000 Aug 30;1460(1):230–239. doi: 10.1016/s0005-2728(00)00142-0. [DOI] [PubMed] [Google Scholar]
- Scharf B., Pevec B., Hess B., Engelhard M. Biochemical and photochemical properties of the photophobic receptors from Halobacterium halobium and Natronobacterium pharaonis. Eur J Biochem. 1992 Jun 1;206(2):359–366. doi: 10.1111/j.1432-1033.1992.tb16935.x. [DOI] [PubMed] [Google Scholar]
- Schmies G., Engelhard M., Wood P. G., Nagel G., Bamberg E. Electrophysiological characterization of specific interactions between bacterial sensory rhodopsins and their transducers. Proc Natl Acad Sci U S A. 2001 Jan 30;98(4):1555–1559. doi: 10.1073/pnas.031562298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmies G., Lüttenberg B., Chizhov I., Engelhard M., Becker A., Bamberg E. Sensory rhodopsin II from the haloalkaliphilic natronobacterium pharaonis: light-activated proton transfer reactions. Biophys J. 2000 Feb;78(2):967–976. doi: 10.1016/S0006-3495(00)76654-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seidel R., Scharf B., Gautel M., Kleine K., Oesterhelt D., Engelhard M. The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):3036–3040. doi: 10.1073/pnas.92.7.3036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimono K., Ikeura Y., Sudo Y., Iwamoto M., Kamo N. Environment around the chromophore in pharaonis phoborhodopsin: mutation analysis of the retinal binding site. Biochim Biophys Acta. 2001 Dec 1;1515(2):92–100. doi: 10.1016/s0005-2736(01)00394-7. [DOI] [PubMed] [Google Scholar]
- Shimono K., Iwamoto M., Sumi M., Kamo N. Functional expression of pharaonis phoborhodopsin in Escherichia coli. FEBS Lett. 1997 Dec 22;420(1):54–56. doi: 10.1016/s0014-5793(97)01487-7. [DOI] [PubMed] [Google Scholar]
- Shimono K., Kitami M., Iwamoto M., Kamo N. Involvement of two groups in reversal of the bathochromic shift of pharaonis phoborhodopsin by chloride at low pH. Biophys Chem. 2000 Oct 30;87(2-3):225–230. doi: 10.1016/s0301-4622(00)00195-2. [DOI] [PubMed] [Google Scholar]
- Spudich J. L., Yang C. S., Jung K. H., Spudich E. N. Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol. 2000;16:365–392. doi: 10.1146/annurev.cellbio.16.1.365. [DOI] [PubMed] [Google Scholar]
- Sudo Y., Iwamoto M., Shimono K., Sumi M., Kamo N. Photo-induced proton transport of pharaonis phoborhodopsin (sensory rhodopsin II) is ceased by association with the transducer. Biophys J. 2001 Feb;80(2):916–922. doi: 10.1016/S0006-3495(01)76070-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuan C., Kuwata O., Liang J., Misra S., Balashov S. P., Ebrey T. G. Chloride binding regulates the Schiff base pK in gecko P521 cone-type visual pigment. Biochemistry. 1999 Apr 6;38(14):4649–4654. doi: 10.1021/bi9828977. [DOI] [PubMed] [Google Scholar]
- Zhang W., Brooun A., Mueller M. M., Alam M. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8230–8235. doi: 10.1073/pnas.93.16.8230. [DOI] [PMC free article] [PubMed] [Google Scholar]