Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Aug;83(2):1147–1156. doi: 10.1016/S0006-3495(02)75238-7

Intermolecular interactions, nucleation, and thermodynamics of crystallization of hemoglobin C.

Peter G Vekilov 1, Angela R Feeling-Taylor 1, Dimiter N Petsev 1, Oleg Galkin 1, Ronald L Nagel 1, Rhoda Elison Hirsch 1
PMCID: PMC1302216  PMID: 12124294

Abstract

The mutated hemoglobin HbC (beta 6 Glu-->Lys), in the oxygenated (R) liganded state, forms crystals inside red blood cells of patients with CC and SC diseases. Static and dynamic light scattering characterization of the interactions between the R-state (CO) HbC, HbA, and HbS molecules in low-ionic-strength solutions showed that electrostatics is unimportant and that the interactions are dominated by the specific binding of solutions' ions to the proteins. Microscopic observations and determinations of the nucleation statistics showed that the crystals of HbC nucleate and grow by the attachment of native molecules from the solution and that concurrent amorphous phases, spherulites, and microfibers are not building blocks for the crystal. Using a novel miniaturized light-scintillation technique, we quantified a strong retrograde solubility dependence on temperature. Thermodynamic analyses of HbC crystallization yielded a high positive enthalpy of 155 kJ mol(-1), i.e., the specific interactions favor HbC molecules in the solute state. Then, HbC crystallization is only possible because of the huge entropy gain of 610 J mol(-1) K(-1), likely stemming from the release of up to 10 water molecules per protein intermolecular contact-hydrophobic interaction. Thus, the higher crystallization propensity of R-state HbC is attributable to increased hydrophobicity resulting from the conformational changes that accompany the HbC beta 6 mutation.

Full Text

The Full Text of this article is available as a PDF (167.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi K., Asakura T. Aggregation and crystallization of hemoglobins A, S, and C. Probable formation of different nuclei for gelation and crystallization. J Biol Chem. 1981 Feb 25;256(4):1824–1830. [PubMed] [Google Scholar]
  2. Benedek G. B., Pande J., Thurston G. M., Clark J. I. Theoretical and experimental basis for the inhibition of cataract. Prog Retin Eye Res. 1999 May;18(3):391–402. doi: 10.1016/s1350-9462(98)00023-8. [DOI] [PubMed] [Google Scholar]
  3. Bluemke D. A., Carragher B., Potel M. J., Josephs R. Structural analysis of polymers of sickle cell hemoglobin. II. Sickle hemoglobin macrofibers. J Mol Biol. 1988 Jan 20;199(2):333–348. doi: 10.1016/0022-2836(88)90317-8. [DOI] [PubMed] [Google Scholar]
  4. Charache S., Conley C. L., Waugh D. F., Ugoretz R. J., Spurrell J. R. Pathogenesis of hemolytic anemia in homozygous hemoglobin C disease. J Clin Invest. 1967 Nov;46(11):1795–1811. doi: 10.1172/JCI105670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunitz J. D. The entropic cost of bound water in crystals and biomolecules. Science. 1994 Apr 29;264(5159):670–670. doi: 10.1126/science.264.5159.670. [DOI] [PubMed] [Google Scholar]
  6. Eaton W. A., Hofrichter J. Sickle cell hemoglobin polymerization. Adv Protein Chem. 1990;40:63–279. doi: 10.1016/s0065-3233(08)60287-9. [DOI] [PubMed] [Google Scholar]
  7. Elbaum D., Nagel R. L., Herskovits T. T. Aggregation of deoxyhemoglobin S at low concentrations. J Biol Chem. 1976 Dec 10;251(23):7657–7660. [PubMed] [Google Scholar]
  8. Ferrone F. A., Hofrichter J., Eaton W. A. Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques. J Mol Biol. 1985 Jun 25;183(4):591–610. doi: 10.1016/0022-2836(85)90174-3. [DOI] [PubMed] [Google Scholar]
  9. Ferrone F. A., Hofrichter J., Eaton W. A. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol. 1985 Jun 25;183(4):611–631. doi: 10.1016/0022-2836(85)90175-5. [DOI] [PubMed] [Google Scholar]
  10. Finkelstein A. V., Janin J. The price of lost freedom: entropy of bimolecular complex formation. Protein Eng. 1989 Oct;3(1):1–3. doi: 10.1093/protein/3.1.1. [DOI] [PubMed] [Google Scholar]
  11. Fitzgerald P. M., Love W. E. Structure of deoxy hemoglobin C (beta six Glu replaced by Lys) in two crystal forms. J Mol Biol. 1979 Aug 25;132(4):603–619. doi: 10.1016/0022-2836(79)90377-2. [DOI] [PubMed] [Google Scholar]
  12. Fronticelli C. Effect of the beta6 Glu replaced by Val mutation on the optical activity of hemoglobin S and of its beta subunits. J Biol Chem. 1978 Apr 10;253(7):2288–2291. [PubMed] [Google Scholar]
  13. Fronticelli C., Gold R. Conformational relevance of the beta6Glu replaced by Val mutation in the beta subunits and in the beta(1-55) and beta(1-30) peptides of hemoglobin S. J Biol Chem. 1976 Aug 25;251(16):4968–4972. [PubMed] [Google Scholar]
  14. Fung L. W., Ho C. A proton nuclear magnetic resonance study of the quaternary structure of human homoglobins in water. Biochemistry. 1975 Jun 3;14(11):2526–2535. doi: 10.1021/bi00682a036. [DOI] [PubMed] [Google Scholar]
  15. Fung L. W., Lin K. L., Ho C. High-resolution proton nuclear magnetic resonance studies of sickle cell hemoglobin. Biochemistry. 1975 Jul 29;14(15):3424–3430. doi: 10.1021/bi00686a021. [DOI] [PubMed] [Google Scholar]
  16. HUNT J. A., INGRAM V. M. Allelomorphism and the chemical differences of the human haemoglobins A, S and C. Nature. 1958 Apr 12;181(4615):1062–1063. doi: 10.1038/1811062a0. [DOI] [PubMed] [Google Scholar]
  17. Herskovits T. T., Cavanagh S. M., San George R. C. Light-scattering investigations of the subunit dissociation of human hemoglobin A. Effects of various neutral salts. Biochemistry. 1977 Dec 27;16(26):5795–5801. doi: 10.1021/bi00645a024. [DOI] [PubMed] [Google Scholar]
  18. Hirsch R. E., Lin M. J., Vidugiris G. J., Huang S., Friedman J. M., Nagel R. L., Vidugirus G. V. Conformational changes in oxyhemoglobin C (Glu beta 6-->Lys) detected by spectroscopic probing. J Biol Chem. 1996 Jan 5;271(1):372–375. doi: 10.1074/jbc.271.1.372. [DOI] [PubMed] [Google Scholar]
  19. Hirsch R. E., Raventos-Suarez C., Olson J. A., Nagel R. L. Ligand state of intraerythrocytic circulating HbC crystals in homozygote CC patients. Blood. 1985 Oct;66(4):775–777. [PubMed] [Google Scholar]
  20. Hirsch R. E., Samuel R. E., Fataliev N. A., Pollack M. J., Galkin O., Vekilov P. G., Nagel R. L. Differential pathways in oxy and deoxy HbC aggregation/crystallization. Proteins. 2001 Jan 1;42(1):99–107. doi: 10.1002/1097-0134(20010101)42:1<99::aid-prot100>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  21. Hofrichter J. Kinetics of sickle hemoglobin polymerization. III. Nucleation rates determined from stochastic fluctuations in polymerization progress curves. J Mol Biol. 1986 Jun 5;189(3):553–571. doi: 10.1016/0022-2836(86)90324-4. [DOI] [PubMed] [Google Scholar]
  22. ITANO H. A. Solubilities of naturally occurring mixtures of human hemoglobin. Arch Biochem Biophys. 1953 Nov;47(1):148–159. doi: 10.1016/0003-9861(53)90444-5. [DOI] [PubMed] [Google Scholar]
  23. Israelachvili J., Wennerström H. Role of hydration and water structure in biological and colloidal interactions. Nature. 1996 Jan 18;379(6562):219–225. doi: 10.1038/379219a0. [DOI] [PubMed] [Google Scholar]
  24. Kam Z., Hofrichter J. Quasi-elastic laser light scattering from solutions and gels of hemoglobin S. Biophys J. 1986 Nov;50(5):1015–1020. doi: 10.1016/S0006-3495(86)83544-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kam Z., Shore H. B., Feher G. On the crystallization of proteins. J Mol Biol. 1978 Aug 25;123(4):539–555. doi: 10.1016/0022-2836(78)90206-1. [DOI] [PubMed] [Google Scholar]
  26. Koo E. H., Lansbury P. T., Jr, Kelly J. W. Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):9989–9990. doi: 10.1073/pnas.96.18.9989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kuntz I. D., Zipp A. Water in biological systems. N Engl J Med. 1977 Aug 4;297(5):262–266. doi: 10.1056/NEJM197708042970509. [DOI] [PubMed] [Google Scholar]
  28. Lauffer M. A. Entropy-driven processes in biology. Mol Biol Biochem Biophys. 1975;(20):1–264. doi: 10.1007/978-3-642-80869-2. [DOI] [PubMed] [Google Scholar]
  29. Lawrence C., Fabry M. E., Nagel R. L. The unique red cell heterogeneity of SC disease: crystal formation, dense reticulocytes, and unusual morphology. Blood. 1991 Oct 15;78(8):2104–2112. [PubMed] [Google Scholar]
  30. Lessin L. S., Jensen W. N., Ponder E. Molecular mechanism of hemolytic anemia in homozygous hemoglobin C disease. Electron microscopic study by the freeze-etching technique. J Exp Med. 1969 Sep 1;130(3):443–466. doi: 10.1084/jem.130.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lomakin A., Chung D. S., Benedek G. B., Kirschner D. A., Teplow D. B. On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1125–1129. doi: 10.1073/pnas.93.3.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lunelli L, Bucci E, Baldini G. Electrostatic interactions in hemoglobin from light scattering experiments. Phys Rev Lett. 1993 Jan 25;70(4):513–516. doi: 10.1103/PhysRevLett.70.513. [DOI] [PubMed] [Google Scholar]
  33. Makinen M. W., Sigountos C. W. Structural basis and dynamics of the fiber-to-crystal transition of sickle cell hemoglobin. J Mol Biol. 1984 Sep 15;178(2):439–476. doi: 10.1016/0022-2836(84)90152-9. [DOI] [PubMed] [Google Scholar]
  34. Malkin A. J., McPherson A. Light-scattering investigations of nucleation processes and kinetics of crystallization in macromolecular systems. Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):385–395. doi: 10.1107/S0907444993013319. [DOI] [PubMed] [Google Scholar]
  35. McPherson A., Malkin A. J., Kuznetsov YuG Atomic force microscopy in the study of macromolecular crystal growth. Annu Rev Biophys Biomol Struct. 2000;29:361–410. doi: 10.1146/annurev.biophys.29.1.361. [DOI] [PubMed] [Google Scholar]
  36. Minton A. P. Non-ideality and the thermodynamics of sickle-cell hemoglobin gelation. J Mol Biol. 1977 Feb 15;110(1):89–103. doi: 10.1016/s0022-2836(77)80100-9. [DOI] [PubMed] [Google Scholar]
  37. Perutz M. F. Structure and mechanism of haemoglobin. Br Med Bull. 1976 Sep;32(3):195–208. doi: 10.1093/oxfordjournals.bmb.a071363. [DOI] [PubMed] [Google Scholar]
  38. Perutz M. F. The first Sir Hans Krebs lecture. X-ray analysis, structure and function of enzymes. Eur J Biochem. 1969 Apr;8(4):445–466. doi: 10.1111/j.1432-1033.1969.tb00549.x. [DOI] [PubMed] [Google Scholar]
  39. Petsev D. N., Thomas B. R., Yau S., Vekilov P. G. Interactions and aggregation of apoferritin molecules in solution: effects of added electrolytes. Biophys J. 2000 Apr;78(4):2060–2069. doi: 10.1016/s0006-3495(00)76753-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Petsev D. N., Vekilov P. G. Evidence for non-DLVO hydration interactions in solutions of the protein apoferritin. Phys Rev Lett. 2000 Feb 7;84(6):1339–1342. doi: 10.1103/PhysRevLett.84.1339. [DOI] [PubMed] [Google Scholar]
  41. Potel M. J., Wellems T. E., Vassar R. J., Deer B., Josephs R. Macrofiber structure and the dynamics of sickle cell hemoglobin crystallization. J Mol Biol. 1984 Aug 25;177(4):819–839. doi: 10.1016/0022-2836(84)90050-0. [DOI] [PubMed] [Google Scholar]
  42. Prouty M. S., Schechter A. N., Parsegian V. A. Chemical potential measurements of deoxyhemoglobin S polymerization. Determination of the phase diagram of an assembling protein. J Mol Biol. 1985 Aug 5;184(3):517–528. doi: 10.1016/0022-2836(85)90298-0. [DOI] [PubMed] [Google Scholar]
  43. Ross P. D., Briehl R. W., Minton A. P. Temperature dependence of nonideality in concentrated solutions of hemoglobin. Biopolymers. 1978 Sep;17(9):2285–2288. doi: 10.1002/bip.1978.360170920. [DOI] [PubMed] [Google Scholar]
  44. Ross P. D., Hofrichter J., Eaton W. A. Thermodynamics of gelation of sickle cell deoxyhemoglobin. J Mol Biol. 1977 Sep 15;115(2):111–134. doi: 10.1016/0022-2836(77)90093-6. [DOI] [PubMed] [Google Scholar]
  45. Ross P. D., Minton A. P. Analysis of non-ideal behavior in concentrated hemoglobin solutions. J Mol Biol. 1977 May 25;112(3):437–452. doi: 10.1016/s0022-2836(77)80191-5. [DOI] [PubMed] [Google Scholar]
  46. Ross P. D., Minton A. P. Hard quasispherical model for the viscosity of hemoglobin solutions. Biochem Biophys Res Commun. 1977 Jun 20;76(4):971–976. doi: 10.1016/0006-291x(77)90950-0. [DOI] [PubMed] [Google Scholar]
  47. Tidor B., Karplus M. The contribution of vibrational entropy to molecular association. The dimerization of insulin. J Mol Biol. 1994 May 6;238(3):405–414. doi: 10.1006/jmbi.1994.1300. [DOI] [PubMed] [Google Scholar]
  48. Vásquez G. B., Ji X., Fronticelli C., Gilliland G. L. Human carboxyhemoglobin at 2.2 A resolution: structure and solvent comparisons of R-state, R2-state and T-state hemoglobins. Acta Crystallogr D Biol Crystallogr. 1998 May 1;54(Pt 3):355–366. doi: 10.1107/s0907444997012250. [DOI] [PubMed] [Google Scholar]
  49. Williams R. C., Jr Concerted formation of the gel of hemoglobin S. Proc Natl Acad Sci U S A. 1973 May;70(5):1506–1508. doi: 10.1073/pnas.70.5.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yau S. T., Petsev D. N., Thomas B. R., Vekilov P. G. Molecular-level thermodynamic and kinetic parameters for the self-assembly of apoferritin molecules into crystals. J Mol Biol. 2000 Nov 10;303(5):667–678. doi: 10.1006/jmbi.2000.4171. [DOI] [PubMed] [Google Scholar]
  51. Yau S. T., Vekilov P. G. Quasi-planar nucleus structure in apoferritin crystallization. Nature. 2000 Aug 3;406(6795):494–497. doi: 10.1038/35020035. [DOI] [PubMed] [Google Scholar]
  52. Yau S, Thomas BR, Vekilov PG. Molecular mechanisms of crystallization and defect formation. Phys Rev Lett. 2000 Jul 10;85(2):353–356. doi: 10.1103/PhysRevLett.85.353. [DOI] [PubMed] [Google Scholar]
  53. Zipp A., Kuntz I. D., James T. L. Hemoglobin-water interactions in normal and sickle erythrocytes by proton magnetic resonance T1p measurements. Arch Biochem Biophys. 1977 Jan 30;178(2):435–441. doi: 10.1016/0003-9861(77)90213-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES