Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Aug;83(2):1217–1230. doi: 10.1016/S0006-3495(02)75245-4

Model-based analysis of assembly kinetics for virus capsids or other spherical polymers.

Dan Endres 1, Adam Zlotnick 1
PMCID: PMC1302223  PMID: 12124301

Abstract

The assembly of virus capsids or other spherical polymers--empty, closed structures composed of hundreds of protein subunits--is poorly understood. Assembly of a closed spherical polymer is unlike polymerization of a filament or crystal, examples of open-ended polymers. This must be considered to develop physically meaningful analyses. We have developed a model of capsid assembly, based on a cascade of low-order reactions, that allows us to calculate kinetic simulations. The behavior of this model resembles assembly kinetics observed in solution (Zlotnick, A., J. M. Johnson, P. W. Wingfield, S. J. Stahl, and D. Endres. 1999. Biochemistry. 38:14644-14652). We exhibit two examples of this general model describing assembly of dodecahedral and icosahedral capsids. Using simulations based on these examples, we demonstrate how to extract robust estimates of assembly parameters from accessible experimental data. These parameters, nucleus size, average nucleation rate, and average free energy of association can be determined from measurement of subunit and capsid as time and concentration vary. Mathematical derivations of the analyses, carried out for a general model, are provided in an Appendix. The understanding of capsid assembly developed in this paper is general; the examples provided can be readily modified to reflect different biological systems. This enhanced understanding of virus assembly will allow a more quantitative analysis of virus stability and biological or antiviral factors that affect assembly.

Full Text

The Full Text of this article is available as a PDF (344.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adolph K. W., Butler P. J. Assembly of a spherical plant virus. Philos Trans R Soc Lond B Biol Sci. 1976 Nov 30;276(943):113–122. doi: 10.1098/rstb.1976.0102. [DOI] [PubMed] [Google Scholar]
  2. Bancroft J. B., Hiebert E., Bracker C. E. The effects of various polyanions on shell formation of some spherical viruses. Virology. 1969 Dec;39(4):924–930. doi: 10.1016/0042-6822(69)90029-4. [DOI] [PubMed] [Google Scholar]
  3. Bancroft J. B., Hiebert E. Formation of an infectious nucleoprotein from protein and nucleic acid isolated from a small spherical virus. Virology. 1967 Jun;32(2):354–356. doi: 10.1016/0042-6822(67)90284-x. [DOI] [PubMed] [Google Scholar]
  4. Bancroft J. B., Hills G. J., Markham R. A study of the self-assembly process in a small spherical virus. Formation of organized structures from protein subunits in vitro. Virology. 1967 Feb;31(2):354–379. doi: 10.1016/0042-6822(67)90180-8. [DOI] [PubMed] [Google Scholar]
  5. Bancroft J. B., Wagner G. W., Bracker C. E. The self-assembly of a nucleic-acid free pseudo-top component for a small spherical virus. Virology. 1968 Sep;36(1):146–149. doi: 10.1016/0042-6822(68)90126-8. [DOI] [PubMed] [Google Scholar]
  6. Bartenschlager R., Schaller H. Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. EMBO J. 1992 Sep;11(9):3413–3420. doi: 10.1002/j.1460-2075.1992.tb05420.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Basavappa R., Syed R., Flore O., Icenogle J. P., Filman D. J., Hogle J. M. Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 A resolution. Protein Sci. 1994 Oct;3(10):1651–1669. doi: 10.1002/pro.5560031005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Beckett D., Wu H. N., Uhlenbeck O. C. Roles of operator and non-operator RNA sequences in bacteriophage R17 capsid assembly. J Mol Biol. 1988 Dec 20;204(4):939–947. doi: 10.1016/0022-2836(88)90053-8. [DOI] [PubMed] [Google Scholar]
  9. Berger B., Shor P. W., Tucker-Kellogg L., King J. Local rule-based theory of virus shell assembly. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7732–7736. doi: 10.1073/pnas.91.16.7732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. CASPAR D. L., KLUG A. Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol. 1962;27:1–24. doi: 10.1101/sqb.1962.027.001.005. [DOI] [PubMed] [Google Scholar]
  11. Caspar D. L. Movement and self-control in protein assemblies. Quasi-equivalence revisited. Biophys J. 1980 Oct;32(1):103–138. doi: 10.1016/S0006-3495(80)84929-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Conway J. F., Wikoff W. R., Cheng N., Duda R. L., Hendrix R. W., Johnson J. E., Steven A. C. Virus maturation involving large subunit rotations and local refolding. Science. 2001 Apr 27;292(5517):744–748. doi: 10.1126/science.1058069. [DOI] [PubMed] [Google Scholar]
  13. Dill K. A. Polymer principles and protein folding. Protein Sci. 1999 Jun;8(6):1166–1180. doi: 10.1110/ps.8.6.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dinner A. R., Sali A., Smith L. J., Dobson C. M., Karplus M. Understanding protein folding via free-energy surfaces from theory and experiment. Trends Biochem Sci. 2000 Jul;25(7):331–339. doi: 10.1016/s0968-0004(00)01610-8. [DOI] [PubMed] [Google Scholar]
  15. Flyvbjerg H., Jobs E., Leibler S. Kinetics of self-assembling microtubules: an "inverse problem" in biochemistry. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5975–5979. doi: 10.1073/pnas.93.12.5975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fox J. M., Wang G., Speir J. A., Olson N. H., Johnson J. E., Baker T. S., Young M. J. Comparison of the native CCMV virion with in vitro assembled CCMV virions by cryoelectron microscopy and image reconstruction. Virology. 1998 Apr 25;244(1):212–218. doi: 10.1006/viro.1998.9107. [DOI] [PubMed] [Google Scholar]
  17. Prevelige P. E., Jr, Thomas D., King J. Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys J. 1993 Mar;64(3):824–835. doi: 10.1016/S0006-3495(93)81443-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rombaut B., Vrijsen R., Boeyé A. New evidence for the precursor role of 14 S subunits in poliovirus morphogenesis. Virology. 1990 Jul;177(1):411–414. doi: 10.1016/0042-6822(90)90502-i. [DOI] [PubMed] [Google Scholar]
  19. Salunke D. M., Caspar D. L., Garcea R. L. Polymorphism in the assembly of polyomavirus capsid protein VP1. Biophys J. 1989 Nov;56(5):887–900. doi: 10.1016/S0006-3495(89)82735-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schwartz R., Shor P. W., Prevelige P. E., Jr, Berger B. Local rules simulation of the kinetics of virus capsid self-assembly. Biophys J. 1998 Dec;75(6):2626–2636. doi: 10.1016/S0006-3495(98)77708-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Seifer M., Zhou S., Standring D. N. A micromolar pool of antigenically distinct precursors is required to initiate cooperative assembly of hepatitis B virus capsids in Xenopus oocytes. J Virol. 1993 Jan;67(1):249–257. doi: 10.1128/jvi.67.1.249-257.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sorger P. K., Stockley P. G., Harrison S. C. Structure and assembly of turnip crinkle virus. II. Mechanism of reassembly in vitro. J Mol Biol. 1986 Oct 20;191(4):639–658. doi: 10.1016/0022-2836(86)90451-1. [DOI] [PubMed] [Google Scholar]
  23. Zhao X., Fox J. M., Olson N. H., Baker T. S., Young M. J. In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. Virology. 1995 Mar 10;207(2):486–494. doi: 10.1006/viro.1995.1108. [DOI] [PubMed] [Google Scholar]
  24. Zlotnick A., Aldrich R., Johnson J. M., Ceres P., Young M. J. Mechanism of capsid assembly for an icosahedral plant virus. Virology. 2000 Nov 25;277(2):450–456. doi: 10.1006/viro.2000.0619. [DOI] [PubMed] [Google Scholar]
  25. Zlotnick A., Cheng N., Conway J. F., Booy F. P., Steven A. C., Stahl S. J., Wingfield P. T. Dimorphism of hepatitis B virus capsids is strongly influenced by the C-terminus of the capsid protein. Biochemistry. 1996 Jun 11;35(23):7412–7421. doi: 10.1021/bi9604800. [DOI] [PubMed] [Google Scholar]
  26. Zlotnick A., Johnson J. M., Wingfield P. W., Stahl S. J., Endres D. A theoretical model successfully identifies features of hepatitis B virus capsid assembly. Biochemistry. 1999 Nov 2;38(44):14644–14652. doi: 10.1021/bi991611a. [DOI] [PubMed] [Google Scholar]
  27. Zlotnick A. To build a virus capsid. An equilibrium model of the self assembly of polyhedral protein complexes. J Mol Biol. 1994 Aug 5;241(1):59–67. doi: 10.1006/jmbi.1994.1473. [DOI] [PubMed] [Google Scholar]
  28. van den Worm S. H., Stonehouse N. J., Valegârd K., Murray J. B., Walton C., Fridborg K., Stockley P. G., Liljas L. Crystal structures of MS2 coat protein mutants in complex with wild-type RNA operator fragments. Nucleic Acids Res. 1998 Mar 1;26(5):1345–1351. doi: 10.1093/nar/26.5.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES