Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Sep;83(3):1259–1267. doi: 10.1016/S0006-3495(02)73898-8

Molecular dynamics investigation of membrane-bound bundles of the channel-forming transmembrane domain of viral protein U from the human immunodeficiency virus HIV-1.

Carlos F Lopez 1, Mauricio Montal 1, J Kent Blasie 1, Michael L Klein 1, Preston B Moore 1
PMCID: PMC1302226  PMID: 12202353

Abstract

Molecular dynamics (MD) simulations have been carried out on bundles of the channel-forming transmembrane (TM) domain of the viral protein U (VPU(1-27) and VPU(6-27)) from the human immunodeficiency virus (HIV-1). Simulations of hexameric and pentameric bundles of VPU(6-27) in an octane/water membrane mimetic system suggested that the pentamer is the preferred oligomer. Accordingly, an unconstrained pentameric helix bundle of VPU(1-27) was then placed in a hydrated palmitoyl-oleyl-3-n-glycero-phosphatidylethanolamine (POPE) lipid bilayer and its structural properties calculated from a 3-ns MD run. Some water molecules, initially inside the channel lumen, were expelled halfway through the simulation and the bundle adopted a conical structure reminiscent of previous MD results obtained for VPU(6-27) in an octane/water system. The pore constriction generated may correspond to a closed state of the channel and underlies the relocation of the W residue toward the pore lumen. The relative positions of the helices with respect to the bilayer and their interactions with the lipids are discussed. The observed structure is stabilized via specific interactions between the VPU helices and the carbonyl oxygen atoms of the lipid molecules, particularly at the Q and S residues.

Full Text

The Full Text of this article is available as a PDF (405.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Feller S. E., Yin D., Pastor R. W., MacKerell A. D., Jr Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. Biophys J. 1997 Nov;73(5):2269–2279. doi: 10.1016/S0006-3495(97)78259-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Frankel A. D., Young J. A. HIV-1: fifteen proteins and an RNA. Annu Rev Biochem. 1998;67:1–25. doi: 10.1146/annurev.biochem.67.1.1. [DOI] [PubMed] [Google Scholar]
  3. Grice A. L., Kerr I. D., Sansom M. S. Ion channels formed by HIV-1 Vpu: a modelling and simulation study. FEBS Lett. 1997 Apr 1;405(3):299–304. doi: 10.1016/s0014-5793(97)00198-1. [DOI] [PubMed] [Google Scholar]
  4. Kukol A., Arkin I. T. vpu transmembrane peptide structure obtained by site-specific fourier transform infrared dichroism and global molecular dynamics searching. Biophys J. 1999 Sep;77(3):1594–1601. doi: 10.1016/S0006-3495(99)77007-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lamb R. A., Pinto L. H. Do Vpu and Vpr of human immunodeficiency virus type 1 and NB of influenza B virus have ion channel activities in the viral life cycles? Virology. 1997 Mar 3;229(1):1–11. doi: 10.1006/viro.1997.8451. [DOI] [PubMed] [Google Scholar]
  6. Lundbaek J. A., Andersen O. S. Spring constants for channel-induced lipid bilayer deformations. Estimates using gramicidin channels. Biophys J. 1999 Feb;76(2):889–895. doi: 10.1016/S0006-3495(99)77252-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Marassi F. M., Ma C., Gratkowski H., Straus S. K., Strebel K., Oblatt-Montal M., Montal M., Opella S. J. Correlation of the structural and functional domains in the membrane protein Vpu from HIV-1. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14336–14341. doi: 10.1073/pnas.96.25.14336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Marassi F. M., Opella S. J. A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson. 2000 May;144(1):150–155. doi: 10.1006/jmre.2000.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Moore P. B., Lopez C. F., Klein M. L. Dynamical properties of a hydrated lipid bilayer from a multinanosecond molecular dynamics simulation. Biophys J. 2001 Nov;81(5):2484–2494. doi: 10.1016/S0006-3495(01)75894-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Moore P. B., Zhong Q., Husslein T., Klein M. L. Simulation of the HIV-1 Vpu transmembrane domain as a pentameric bundle. FEBS Lett. 1998 Jul 17;431(2):143–148. doi: 10.1016/s0014-5793(98)00714-5. [DOI] [PubMed] [Google Scholar]
  11. Norberg J., Nilsson L. On the truncation of long-range electrostatic interactions in DNA. Biophys J. 2000 Sep;79(3):1537–1553. doi: 10.1016/S0006-3495(00)76405-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sansom M. S., Forrest L. R., Bull R. Viral ion channels: molecular modeling and simulation. Bioessays. 1998 Dec;20(12):992–1000. doi: 10.1002/(SICI)1521-1878(199812)20:12<992::AID-BIES5>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  13. Schubert U., Bour S., Ferrer-Montiel A. V., Montal M., Maldarell F., Strebel K. The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. J Virol. 1996 Feb;70(2):809–819. doi: 10.1128/jvi.70.2.809-819.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schubert U., Ferrer-Montiel A. V., Oblatt-Montal M., Henklein P., Strebel K., Montal M. Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett. 1996 Nov 25;398(1):12–18. doi: 10.1016/s0014-5793(96)01146-5. [DOI] [PubMed] [Google Scholar]
  15. Tiganos E., Friborg J., Allain B., Daniel N. G., Yao X. J., Cohen E. A. Structural and functional analysis of the membrane-spanning domain of the human immunodeficiency virus type 1 Vpu protein. Virology. 1998 Nov 10;251(1):96–107. doi: 10.1006/viro.1998.9368. [DOI] [PubMed] [Google Scholar]
  16. Turner B. G., Summers M. F. Structural biology of HIV. J Mol Biol. 1999 Jan 8;285(1):1–32. doi: 10.1006/jmbi.1998.2354. [DOI] [PubMed] [Google Scholar]
  17. Willbold D., Hoffmann S., Rösch P. Secondary structure and tertiary fold of the human immunodeficiency virus protein U (Vpu) cytoplasmic domain in solution. Eur J Biochem. 1997 May 1;245(3):581–588. doi: 10.1111/j.1432-1033.1997.t01-1-00581.x. [DOI] [PubMed] [Google Scholar]
  18. Zheng S., Strzalka J., Ma C., Opella S. J., Ocko B. M., Blasie J. K. Structural studies of the HIV-1 accessory protein Vpu in langmuir monolayers: synchrotron X-ray reflectivity. Biophys J. 2001 Apr;80(4):1837–1850. doi: 10.1016/S0006-3495(01)76154-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES