Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Sep;83(3):1298–1316. doi: 10.1016/S0006-3495(02)73901-5

Simulations of inositol phosphate metabolism and its interaction with InsP(3)-mediated calcium release.

Jyoti Mishra 1, Upinder S Bhalla 1
PMCID: PMC1302229  PMID: 12202356

Abstract

Inositol phosphates function as second messengers for a variety of extracellular signals. Ins(1,4,5)P(3) generated by phospholipase C-mediated hydrolysis of phosphatidylinositol bisphosphate, triggers numerous cellular processes by regulating calcium release from internal stores. The Ins(1,4,5)P(3) signal is coupled to a complex metabolic cascade involving a series of phosphatases and kinases. These enzymes generate a range of inositol phosphate derivatives, many of which have signaling roles of their own. We have integrated published biochemical data to build a mass action model for InsP(3) metabolism. The model includes most inositol phosphates that are currently known to interact with each other. We have used this model to study the effects of a G-protein coupled receptor stimulus that activates phospholipase C on the inositol phosphates. We have also monitored how the metabolic cascade interacts with Ins(1,4,5)P(3)-mediated calcium release. We find temporal dynamics of most inositol phosphates to be strongly influenced by the elaborate networking. We also show that Ins(1,3,4,5)P(4) plays a key role in InsP(3) dynamics and allows for paired pulse facilitation of calcium release. Calcium oscillations produce oscillatory responses in parts of the metabolic network and are in turn temporally modulated by the metabolism of InsP(3).

Full Text

The Full Text of this article is available as a PDF (305.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht Meredith A., Colegrove Stephen L., Friel David D. Differential regulation of ER Ca2+ uptake and release rates accounts for multiple modes of Ca2+-induced Ca2+ release. J Gen Physiol. 2002 Mar;119(3):211–233. doi: 10.1085/jgp.20028484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balla T., Sim S. S., Baukal A. J., Rhee S. G., Catt K. J. Inositol polyphosphates are not increased by overexpression of Ins(1,4,5)P3 3-kinase but show cell-cycle dependent changes in growth factor-stimulated fibroblasts. Mol Biol Cell. 1994 Jan;5(1):17–27. doi: 10.1091/mbc.5.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bansal V. S., Inhorn R. C., Majerus P. W. The metabolism of inositol 1,3,4-trisphosphate to inositol 1,3-bisphosphate. J Biol Chem. 1987 Jul 15;262(20):9444–9447. [PubMed] [Google Scholar]
  4. Batty I. H., Letcher A. J., Nahorski S. R. Accumulation of inositol polyphosphate isomers in agonist-stimulated cerebral-cortex slices. Comparison with metabolic profiles in cell-free preparations. Biochem J. 1989 Feb 15;258(1):23–32. doi: 10.1042/bj2580023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berridge M. J. Calcium oscillations. J Biol Chem. 1990 Jun 15;265(17):9583–9586. [PubMed] [Google Scholar]
  6. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  7. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  8. Berstein G., Blank J. L., Jhon D. Y., Exton J. H., Rhee S. G., Ross E. M. Phospholipase C-beta 1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell. 1992 Aug 7;70(3):411–418. doi: 10.1016/0092-8674(92)90165-9. [DOI] [PubMed] [Google Scholar]
  9. Bhalla U. S., Iyengar R. Emergent properties of networks of biological signaling pathways. Science. 1999 Jan 15;283(5400):381–387. doi: 10.1126/science.283.5400.381. [DOI] [PubMed] [Google Scholar]
  10. Bootman M. D., Berridge M. J. The elemental principles of calcium signaling. Cell. 1995 Dec 1;83(5):675–678. doi: 10.1016/0092-8674(95)90179-5. [DOI] [PubMed] [Google Scholar]
  11. Chi H., Yang X., Kingsley P. D., O'Keefe R. J., Puzas J. E., Rosier R. N., Shears S. B., Reynolds P. R. Targeted deletion of Minpp1 provides new insight into the activity of multiple inositol polyphosphate phosphatase in vivo. Mol Cell Biol. 2000 Sep;20(17):6496–6507. doi: 10.1128/mcb.20.17.6496-6507.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Communi D., Vanweyenberg V., Erneux C. D-myo-inositol 1,4,5-trisphosphate 3-kinase A is activated by receptor activation through a calcium:calmodulin-dependent protein kinase II phosphorylation mechanism. EMBO J. 1997 Apr 15;16(8):1943–1952. doi: 10.1093/emboj/16.8.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cullen P. J., Hsuan J. J., Truong O., Letcher A. J., Jackson T. R., Dawson A. P., Irvine R. F. Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature. 1995 Aug 10;376(6540):527–530. doi: 10.1038/376527a0. [DOI] [PubMed] [Google Scholar]
  14. Cullen P. J., Irvine R. F., Dawson A. P. Synergistic control of Ca2+ mobilization in permeabilized mouse L1210 lymphoma cells by inositol 2,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. Biochem J. 1990 Oct 15;271(2):549–553. doi: 10.1042/bj2710549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dolmetsch R. E., Xu K., Lewis R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 1998 Apr 30;392(6679):933–936. doi: 10.1038/31960. [DOI] [PubMed] [Google Scholar]
  16. Fukuda M., Mikoshiba K. Structure-function relationships of the mouse Gap1m. Determination of the inositol 1,3,4,5-tetrakisphosphate-binding domain. J Biol Chem. 1996 Aug 2;271(31):18838–18842. doi: 10.1074/jbc.271.31.18838. [DOI] [PubMed] [Google Scholar]
  17. Fukuda M., Mikoshiba K. The function of inositol high polyphosphate binding proteins. Bioessays. 1997 Jul;19(7):593–603. doi: 10.1002/bies.950190710. [DOI] [PubMed] [Google Scholar]
  18. Guse A. H., Greiner E., Emmrich F., Brand K. Mass changes of inositol 1,3,4,5,6-pentakisphosphate and inositol hexakisphosphate during cell cycle progression in rat thymocytes. J Biol Chem. 1993 Apr 5;268(10):7129–7133. [PubMed] [Google Scholar]
  19. Hansen C. A., Johanson R. A., Williamson M. T., Williamson J. R. Purification and characterization of two types of soluble inositol phosphate 5-phosphomonoesterases from rat brain. J Biol Chem. 1987 Dec 25;262(36):17319–17326. [PubMed] [Google Scholar]
  20. Harootunian A. T., Kao J. P., Paranjape S., Tsien R. Y. Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3. Science. 1991 Jan 4;251(4989):75–78. doi: 10.1126/science.1986413. [DOI] [PubMed] [Google Scholar]
  21. Hermosura M. C., Takeuchi H., Fleig A., Riley A. M., Potter B. V., Hirata M., Penner R. InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase. Nature. 2000 Dec 7;408(6813):735–740. doi: 10.1038/35047115. [DOI] [PubMed] [Google Scholar]
  22. Hirose K., Kadowaki S., Tanabe M., Takeshima H., Iino M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science. 1999 May 28;284(5419):1527–1530. doi: 10.1126/science.284.5419.1527. [DOI] [PubMed] [Google Scholar]
  23. Ho Melisa W. Y., Yang Xiaonian, Carew Mark A., Zhang Tong, Hua Len, Kwon Yong-Uk, Chung Sung-Kee, Adelt Stephan, Vogel Günter, Riley Andrew M. Regulation of Ins(3,4,5,6)P(4) signaling by a reversible kinase/phosphatase. Curr Biol. 2002 Mar 19;12(6):477–482. doi: 10.1016/s0960-9822(02)00713-3. [DOI] [PubMed] [Google Scholar]
  24. Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
  25. Hughes P. J., Drummond A. H. Formation of inositol phosphate isomers in GH3 pituitary tumour cells stimulated with thyrotropin-releasing hormone. Acute effects of lithium ions. Biochem J. 1987 Dec 1;248(2):463–470. doi: 10.1042/bj2480463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Höer A., Oberdisse E. Inositol 1,3,4,5,6-pentakisphosphate and inositol hexakisphosphate are inhibitors of the soluble inositol 1,3,4,5-tetrakisphosphate 3-phosphatase and the inositol 1,4,5-trisphosphate/1,3,4,5-tetrakisphosphate 5-phosphatase from pig brain. Biochem J. 1991 Aug 15;278(Pt 1):219–224. doi: 10.1042/bj2780219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Irvine R. F., Schell M. J. Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol. 2001 May;2(5):327–338. doi: 10.1038/35073015. [DOI] [PubMed] [Google Scholar]
  28. Irvine R. Inositol phosphates: Does IP(4) run a protection racket? Curr Biol. 2001 Mar 6;11(5):R172–R174. doi: 10.1016/s0960-9822(01)00086-0. [DOI] [PubMed] [Google Scholar]
  29. Jackson T. R., Hallam T. J., Downes C. P., Hanley M. R. Receptor coupled events in bradykinin action: rapid production of inositol phosphates and regulation of cytosolic free Ca2+ in a neural cell line. EMBO J. 1987 Jan;6(1):49–54. doi: 10.1002/j.1460-2075.1987.tb04717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kahlert S., Reiser G. Requirement of glycolytic and mitochondrial energy supply for loading of Ca(2+) stores and InsP(3)-mediated Ca(2+) signaling in rat hippocampus astrocytes. J Neurosci Res. 2000 Aug 15;61(4):409–420. doi: 10.1002/1097-4547(20000815)61:4<409::AID-JNR7>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  31. Lambert D. G., Nahorski S. R. Muscarinic-receptor-mediated changes in intracellular Ca2+ and inositol 1,4,5-trisphosphate mass in a human neuroblastoma cell line, SH-SY5Y. Biochem J. 1990 Jan 15;265(2):555–562. doi: 10.1042/bj2650555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lechleiter J., Girard S., Peralta E., Clapham D. Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science. 1991 Apr 5;252(5002):123–126. doi: 10.1126/science.2011747. [DOI] [PubMed] [Google Scholar]
  33. Majerus P. W. Inositol phosphate biochemistry. Annu Rev Biochem. 1992;61:225–250. doi: 10.1146/annurev.bi.61.070192.001301. [DOI] [PubMed] [Google Scholar]
  34. Meyer T., Stryer L. Calcium spiking. Annu Rev Biophys Biophys Chem. 1991;20:153–174. doi: 10.1146/annurev.bb.20.060191.001101. [DOI] [PubMed] [Google Scholar]
  35. Meyer T., Stryer L. Molecular model for receptor-stimulated calcium spiking. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5051–5055. doi: 10.1073/pnas.85.14.5051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Morris A. P., Gallacher D. V., Irvine R. F., Petersen O. H. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels. Nature. 1987 Dec 17;330(6149):653–655. doi: 10.1038/330653a0. [DOI] [PubMed] [Google Scholar]
  37. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  38. Nogimori K., Hughes P. J., Glennon M. C., Hodgson M. E., Putney J. W., Jr, Shears S. B. Purification of an inositol (1,3,4,5)-tetrakisphosphate 3-phosphatase activity from rat liver and the evaluation of its substrate specificity. J Biol Chem. 1991 Sep 5;266(25):16499–16506. [PubMed] [Google Scholar]
  39. Parker I., Ivorra I. Inositol tetrakisphosphate liberates stored Ca2+ in Xenopus oocytes and facilitates responses to inositol trisphosphate. J Physiol. 1991 Feb;433:207–227. doi: 10.1113/jphysiol.1991.sp018422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Parker I., Yao Y. Regenerative release of calcium from functionally discrete subcellular stores by inositol trisphosphate. Proc Biol Sci. 1991 Dec 23;246(1317):269–274. doi: 10.1098/rspb.1991.0154. [DOI] [PubMed] [Google Scholar]
  41. Pittet D., Schlegel W., Lew D. P., Monod A., Mayr G. W. Mass changes in inositol tetrakis- and pentakisphosphate isomers induced by chemotactic peptide stimulation in HL-60 cells. J Biol Chem. 1989 Nov 5;264(31):18489–18493. [PubMed] [Google Scholar]
  42. Rhee S. G. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem. 2001;70:281–312. doi: 10.1146/annurev.biochem.70.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Safrany S. T., Shears S. B. Turnover of bis-diphosphoinositol tetrakisphosphate in a smooth muscle cell line is regulated by beta2-adrenergic receptors through a cAMP-mediated, A-kinase-independent mechanism. EMBO J. 1998 Mar 16;17(6):1710–1716. doi: 10.1093/emboj/17.6.1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Shears S. B. Metabolism of the inositol phosphates produced upon receptor activation. Biochem J. 1989 Jun 1;260(2):313–324. doi: 10.1042/bj2600313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shears S. B. The versatility of inositol phosphates as cellular signals. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):49–67. doi: 10.1016/s0005-2760(98)00131-3. [DOI] [PubMed] [Google Scholar]
  46. Sim S. S., Kim J. W., Rhee S. G. Regulation of D-myo-inositol 1,4,5-trisphosphate 3-kinase by cAMP-dependent protein kinase and protein kinase C. J Biol Chem. 1990 Jun 25;265(18):10367–10372. [PubMed] [Google Scholar]
  47. Sims C. E., Allbritton N. L. Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate by the oocytes of Xenopus laevis. J Biol Chem. 1998 Feb 13;273(7):4052–4058. doi: 10.1074/jbc.273.7.4052. [DOI] [PubMed] [Google Scholar]
  48. Smith P. M., Harmer A. R., Letcher A. J., Irvine R. F. The effect of inositol 1,3,4,5-tetrakisphosphate on inositol trisphosphate-induced Ca2+ mobilization in freshly isolated and cultured mouse lacrimal acinar cells. Biochem J. 2000 Apr 1;347(Pt 1):77–82. [PMC free article] [PubMed] [Google Scholar]
  49. Soriano S., Thomas S., High S., Griffiths G., D'santos C., Cullen P., Banting G. Membrane association, localization and topology of rat inositol 1,4,5-trisphosphate 3-kinase B: implications for membrane traffic and Ca2+ homoeostasis. Biochem J. 1997 Jun 1;324(Pt 2):579–589. doi: 10.1042/bj3240579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Streb H., Irvine R. F., Berridge M. J., Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983 Nov 3;306(5938):67–69. doi: 10.1038/306067a0. [DOI] [PubMed] [Google Scholar]
  51. Tang Y., Stephenson J. L., Othmer H. G. Simplification and analysis of models of calcium dynamics based on IP3-sensitive calcium channel kinetics. Biophys J. 1996 Jan;70(1):246–263. doi: 10.1016/S0006-3495(96)79567-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Taylor C. W., Richardson A. Structure and function of inositol trisphosphate receptors. Pharmacol Ther. 1991;51(1):97–137. doi: 10.1016/0163-7258(91)90043-l. [DOI] [PubMed] [Google Scholar]
  53. Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]
  54. Vajanaphanich M., Schultz C., Rudolf M. T., Wasserman M., Enyedi P., Craxton A., Shears S. B., Tsien R. Y., Barrett K. E., Traynor-Kaplan A. Long-term uncoupling of chloride secretion from intracellular calcium levels by Ins(3,4,5,6)P4. Nature. 1994 Oct 20;371(6499):711–714. doi: 10.1038/371711a0. [DOI] [PubMed] [Google Scholar]
  55. Vallejo M., Jackson T., Lightman S., Hanley M. R. Occurrence and extracellular actions of inositol pentakis- and hexakisphosphate in mammalian brain. Nature. 1987 Dec 17;330(6149):656–658. doi: 10.1038/330656a0. [DOI] [PubMed] [Google Scholar]
  56. Voglmaier S. M., Bembenek M. E., Kaplin A. I., Dormán G., Olszewski J. D., Prestwich G. D., Snyder S. H. Purified inositol hexakisphosphate kinase is an ATP synthase: diphosphoinositol pentakisphosphate as a high-energy phosphate donor. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4305–4310. doi: 10.1073/pnas.93.9.4305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wakui M., Potter B. V., Petersen O. H. Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. Nature. 1989 May 25;339(6222):317–320. doi: 10.1038/339317a0. [DOI] [PubMed] [Google Scholar]
  58. Wang S. S., Alousi A. A., Thompson S. H. The lifetime of inositol 1,4,5-trisphosphate in single cells. J Gen Physiol. 1995 Jan;105(1):149–171. doi: 10.1085/jgp.105.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Yang X., Rudolf M., Carew M. A., Yoshida M., Nerreter V., Riley A. M., Chung S. K., Bruzik K. S., Potter B. V., Schultz C. Inositol 1,3,4-trisphosphate acts in vivo as a specific regulator of cellular signaling by inositol 3,4,5,6-tetrakisphosphate. J Biol Chem. 1999 Jul 2;274(27):18973–18980. doi: 10.1074/jbc.274.27.18973. [DOI] [PubMed] [Google Scholar]
  60. Yang X., Shears S. B. Multitasking in signal transduction by a promiscuous human Ins(3,4,5,6)P(4) 1-kinase/Ins(1,3,4)P(3) 5/6-kinase. Biochem J. 2000 Nov 1;351(Pt 3):551–555. [PMC free article] [PubMed] [Google Scholar]
  61. Ye W., Ali N., Bembenek M. E., Shears S. B., Lafer E. M. Inhibition of clathrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein AP-3. J Biol Chem. 1995 Jan 27;270(4):1564–1568. [PubMed] [Google Scholar]
  62. Zhu D. M., Tekle E., Huang C. Y., Chock P. B. Inositol tetrakisphosphate as a frequency regulator in calcium oscillations in HeLa cells. J Biol Chem. 2000 Mar 3;275(9):6063–6066. doi: 10.1074/jbc.275.9.6063. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES