Abstract
We carried our Poisson-Boltzmann (PB) calculations for the effects of charge reversal at five exposed sites (K16E, R119E, K135E, K147E, and R154E) and charge neutralization and proton titration of the H31-D70 semi-buried salt bridge on the stability of T4 lysozyme. Instead of the widely used solvent-exclusion (SE) surface, we used the van der Waals (vdW) surface as the boundary between the protein and solvent dielectrics (a protocol established in our earlier study on charge mutations in barnase). By including residual charge-charge interactions in the unfolded state, the five charge reversal mutations were found to have DeltaDeltaG(unfold) from -1.6 to 1.3 kcal/mol. This indicates that the variable effects of charge reversal observed by Matthews and co-workers are not unexpected. The H31N, D70N, and H31N/D70N mutations were found to destabilize the protein by 2.9, 1.3, and 1.6 kcal/mol, and the pK(a) values of H31 and D70 were shifted to 9.4 and 0.6, respectively. These results are in good accord with experimental data of Dahlquist and co-workers. In contrast, if the SE surface were used, the H31N/D70N mutant would be more stable than the wild-type protein by 1.3 kcal/mol. From these and additional results for 27 charge mutations on five other proteins, we conclude that 1) the popular view that electrostatic interactions are generally destabilizing may have been based on overestimated desolvation cost as a result of using the SE surface as the dielectric boundary; and 2) while solvent-exposed charges may not reliably contribute to protein stability, semi-buried salt bridges can provide significant stabilization.
Full Text
The Full Text of this article is available as a PDF (117.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson D. E., Becktel W. J., Dahlquist F. W. pH-induced denaturation of proteins: a single salt bridge contributes 3-5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry. 1990 Mar 6;29(9):2403–2408. doi: 10.1021/bi00461a025. [DOI] [PubMed] [Google Scholar]
- Burkhard P., Kammerer R. A., Steinmetz M. O., Bourenkov G. P., Aebi U. The coiled-coil trigger site of the rod domain of cortexillin I unveils a distinct network of interhelical and intrahelical salt bridges. Structure. 2000 Mar 15;8(3):223–230. doi: 10.1016/s0969-2126(00)00100-3. [DOI] [PubMed] [Google Scholar]
- Dao-pin S., Söderlind E., Baase W. A., Wozniak J. A., Sauer U., Matthews B. W. Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability. J Mol Biol. 1991 Oct 5;221(3):873–887. doi: 10.1016/0022-2836(91)80181-s. [DOI] [PubMed] [Google Scholar]
- Elcock A. H., Gabdoulline R. R., Wade R. C., McCammon J. A. Computer simulation of protein-protein association kinetics: acetylcholinesterase-fasciculin. J Mol Biol. 1999 Aug 6;291(1):149–162. doi: 10.1006/jmbi.1999.2919. [DOI] [PubMed] [Google Scholar]
- Elcock A. H. Realistic modeling of the denatured states of proteins allows accurate calculations of the pH dependence of protein stability. J Mol Biol. 1999 Dec 10;294(4):1051–1062. doi: 10.1006/jmbi.1999.3305. [DOI] [PubMed] [Google Scholar]
- Elcock A. H. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J Mol Biol. 1998 Nov 27;284(2):489–502. doi: 10.1006/jmbi.1998.2159. [DOI] [PubMed] [Google Scholar]
- Giletto A., Pace C. N. Buried, charged, non-ion-paired aspartic acid 76 contributes favorably to the conformational stability of ribonuclease T1. Biochemistry. 1999 Oct 5;38(40):13379–13384. doi: 10.1021/bi991422s. [DOI] [PubMed] [Google Scholar]
- Grimsley G. R., Shaw K. L., Fee L. R., Alston R. W., Huyghues-Despointes B. M., Thurlkill R. L., Scholtz J. M., Pace C. N. Increasing protein stability by altering long-range coulombic interactions. Protein Sci. 1999 Sep;8(9):1843–1849. doi: 10.1110/ps.8.9.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendsch Z. S., Tidor B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 1994 Feb;3(2):211–226. doi: 10.1002/pro.5560030206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang S. M., Chou W. Y., Lin S. I., Chang G. G. Engineering of a stable mutant malic enzyme by introducing an extra ion-pair to the protein. Proteins. 1998 Apr 1;31(1):61–73. doi: 10.1002/(sici)1097-0134(19980401)31:1<61::aid-prot6>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
- Ibarra-Molero B., Loladze V. V., Makhatadze G. I., Sanchez-Ruiz J. M. Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability. Biochemistry. 1999 Jun 22;38(25):8138–8149. doi: 10.1021/bi9905819. [DOI] [PubMed] [Google Scholar]
- Kammerer R. A., Jaravine V. A., Frank S., Schulthess T., Landwehr R., Lustig A., Garcia-Echeverria C., Alexandrescu A. T., Engel J., Steinmetz M. O. An intrahelical salt bridge within the trigger site stabilizes the GCN4 leucine zipper. J Biol Chem. 2000 Dec 27;276(17):13685–13688. doi: 10.1074/jbc.M010492200. [DOI] [PubMed] [Google Scholar]
- Lee L. P., Tidor B. Optimization of binding electrostatics: charge complementarity in the barnase-barstar protein complex. Protein Sci. 2001 Feb;10(2):362–377. doi: 10.1110/ps.40001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loladze V. V., Ibarra-Molero B., Sanchez-Ruiz J. M., Makhatadze G. I. Engineering a thermostable protein via optimization of charge-charge interactions on the protein surface. Biochemistry. 1999 Dec 14;38(50):16419–16423. doi: 10.1021/bi992271w. [DOI] [PubMed] [Google Scholar]
- Loladze Vakhtang V., Makhatadze George I. Removal of surface charge-charge interactions from ubiquitin leaves the protein folded and very stable. Protein Sci. 2002 Jan;11(1):174–177. doi: 10.1110/ps.29902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marqusee S., Sauer R. T. Contributions of a hydrogen bond/salt bridge network to the stability of secondary and tertiary structure in lambda repressor. Protein Sci. 1994 Dec;3(12):2217–2225. doi: 10.1002/pro.5560031207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meeker A. K., Garcia-Moreno B., Shortle D. Contributions of the ionizable amino acids to the stability of staphylococcal nuclease. Biochemistry. 1996 May 21;35(20):6443–6449. doi: 10.1021/bi960171+. [DOI] [PubMed] [Google Scholar]
- Merz A., Knöchel T., Jansonius J. N., Kirschner K. The hyperthermostable indoleglycerol phosphate synthase from Thermotoga maritima is destabilized by mutational disruption of two solvent-exposed salt bridges. J Mol Biol. 1999 May 14;288(4):753–763. doi: 10.1006/jmbi.1999.2709. [DOI] [PubMed] [Google Scholar]
- Novotny J., Sharp K. Electrostatic fields in antibodies and antibody/antigen complexes. Prog Biophys Mol Biol. 1992;58(3):203–224. doi: 10.1016/0079-6107(92)90006-r. [DOI] [PubMed] [Google Scholar]
- Ogasahara K., Lapshina E. A., Sakai M., Izu Y., Tsunasawa S., Kato I., Yutani K. Electrostatic stabilization in methionine aminopeptidase from hyperthermophile Pyrococcus furiosus. Biochemistry. 1998 Apr 28;37(17):5939–5946. doi: 10.1021/bi973172q. [DOI] [PubMed] [Google Scholar]
- Olson C. A., Spek E. J., Shi Z., Vologodskii A., Kallenbach N. R. Cooperative helix stabilization by complex Arg-Glu salt bridges. Proteins. 2001 Aug 1;44(2):123–132. doi: 10.1002/prot.1079. [DOI] [PubMed] [Google Scholar]
- Pace C. N., Alston R. W., Shaw K. L. Charge-charge interactions influence the denatured state ensemble and contribute to protein stability. Protein Sci. 2000 Jul;9(7):1395–1398. doi: 10.1110/ps.9.7.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pace C. N. Single surface stabilizer. Nat Struct Biol. 2000 May;7(5):345–346. doi: 10.1038/75100. [DOI] [PubMed] [Google Scholar]
- Perl D., Mueller U., Heinemann U., Schmid F. X. Two exposed amino acid residues confer thermostability on a cold shock protein. Nat Struct Biol. 2000 May;7(5):380–383. doi: 10.1038/75151. [DOI] [PubMed] [Google Scholar]
- Perl D., Schmid F. X. Electrostatic stabilization of a thermophilic cold shock protein. J Mol Biol. 2001 Oct 19;313(2):343–357. doi: 10.1006/jmbi.2001.5050. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Electrostatic effects in proteins. Science. 1978 Sep 29;201(4362):1187–1191. doi: 10.1126/science.694508. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Raidt H. Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature. 1975 May 15;255(5505):256–259. doi: 10.1038/255256a0. [DOI] [PubMed] [Google Scholar]
- Ramos C. H., Kay M. S., Baldwin R. L. Putative interhelix ion pairs involved in the stability of myoglobin. Biochemistry. 1999 Jul 27;38(30):9783–9790. doi: 10.1021/bi9828627. [DOI] [PubMed] [Google Scholar]
- Sali D., Bycroft M., Fersht A. R. Surface electrostatic interactions contribute little of stability of barnase. J Mol Biol. 1991 Aug 5;220(3):779–788. doi: 10.1016/0022-2836(91)90117-o. [DOI] [PubMed] [Google Scholar]
- Sanchez-Ruiz J. M., Makhatadze G. I. To charge or not to charge? Trends Biotechnol. 2001 Apr;19(4):132–135. doi: 10.1016/s0167-7799(00)01548-1. [DOI] [PubMed] [Google Scholar]
- Shaw K. L., Grimsley G. R., Yakovlev G. I., Makarov A. A., Pace C. N. The effect of net charge on the solubility, activity, and stability of ribonuclease Sa. Protein Sci. 2001 Jun;10(6):1206–1215. doi: 10.1110/ps.440101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheinerman F. B., Norel R., Honig B. Electrostatic aspects of protein-protein interactions. Curr Opin Struct Biol. 2000 Apr;10(2):153–159. doi: 10.1016/s0959-440x(00)00065-8. [DOI] [PubMed] [Google Scholar]
- Spector S., Wang M., Carp S. A., Robblee J., Hendsch Z. S., Fairman R., Tidor B., Raleigh D. P. Rational modification of protein stability by the mutation of charged surface residues. Biochemistry. 2000 Feb 8;39(5):872–879. doi: 10.1021/bi992091m. [DOI] [PubMed] [Google Scholar]
- Spek E. J., Bui A. H., Lu M., Kallenbach N. R. Surface salt bridges stabilize the GCN4 leucine zipper. Protein Sci. 1998 Nov;7(11):2431–2437. doi: 10.1002/pro.5560071121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strop P., Mayo S. L. Contribution of surface salt bridges to protein stability. Biochemistry. 2000 Feb 15;39(6):1251–1255. doi: 10.1021/bi992257j. [DOI] [PubMed] [Google Scholar]
- Takano K., Tsuchimori K., Yamagata Y., Yutani K. Contribution of salt bridges near the surface of a protein to the conformational stability. Biochemistry. 2000 Oct 10;39(40):12375–12381. doi: 10.1021/bi000849s. [DOI] [PubMed] [Google Scholar]
- Tissot A. C., Vuilleumier S., Fersht A. R. Importance of two buried salt bridges in the stability and folding pathway of barnase. Biochemistry. 1996 May 28;35(21):6786–6794. doi: 10.1021/bi952930e. [DOI] [PubMed] [Google Scholar]
- Vetriani C., Maeder D. L., Tolliday N., Yip K. S., Stillman T. J., Britton K. L., Rice D. W., Klump H. H., Robb F. T. Protein thermostability above 100 degreesC: a key role for ionic interactions. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12300–12305. doi: 10.1073/pnas.95.21.12300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waldburger C. D., Schildbach J. F., Sauer R. T. Are buried salt bridges important for protein stability and conformational specificity? Nat Struct Biol. 1995 Feb;2(2):122–128. doi: 10.1038/nsb0295-122. [DOI] [PubMed] [Google Scholar]
- Weaver L. H., Matthews B. W. Structure of bacteriophage T4 lysozyme refined at 1.7 A resolution. J Mol Biol. 1987 Jan 5;193(1):189–199. doi: 10.1016/0022-2836(87)90636-x. [DOI] [PubMed] [Google Scholar]
- Zhou Huan-Xiang. A Gaussian-chain model for treating residual charge-charge interactions in the unfolded state of proteins. Proc Natl Acad Sci U S A. 2002 Mar 12;99(6):3569–3574. doi: 10.1073/pnas.052030599. [DOI] [PMC free article] [PubMed] [Google Scholar]