Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Sep;83(3):1374–1379. doi: 10.1016/S0006-3495(02)73908-8

Bridging implicit and explicit solvent approaches for membrane electrostatics.

Jung-Hsin Lin 1, Nathan A Baker 1, J Andrew McCammon 1
PMCID: PMC1302236  PMID: 12202363

Abstract

Conformations of a zwitterionic bilayer were sampled from a molecular dynamics simulation and their electrostatic properties analyzed by solution of the Poisson equation. These traditionally implicit electrostatic calculations were performed in the presence of varying amounts of explicit solvent to assess the magnitude of error introduced by a uniform dielectric description of water surrounding the bilayer. It was observed that membrane dipole potential calculations in the presence of explicit water were significantly different than wholly implicit solvent calculations with the calculated dipole potential converging to a reasonable value when four or more hydration layers were included explicitly.

Full Text

The Full Text of this article is available as a PDF (241.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A. 2001 Aug 21;98(18):10037–10041. doi: 10.1073/pnas.181342398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boresch S., Ringhofer S., Höchtl P., Steinhauser O. Towards a better description and understanding of biomolecular solvation. Biophys Chem. 1999 Apr 5;78(1-2):43–68. doi: 10.1016/s0301-4622(98)00235-x. [DOI] [PubMed] [Google Scholar]
  3. Essmann U., Berkowitz M. L. Dynamical properties of phospholipid bilayers from computer simulation. Biophys J. 1999 Apr;76(4):2081–2089. doi: 10.1016/S0006-3495(99)77364-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Flewelling R. F., Hubbell W. L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys J. 1986 Feb;49(2):541–552. doi: 10.1016/S0006-3495(86)83664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Green B. N., Gotoh T., Suzuki T., Zal F., Lallier F. H., Toulmond A., Vinogradov S. N. Observation of large, non-covalent globin subassemblies in the approximately 3600 kDa hexagonal bilayer hemoglobins by electrospray ionization time-of-flight mass spectrometry. J Mol Biol. 2001 Jun 8;309(3):553–560. doi: 10.1006/jmbi.2001.4704. [DOI] [PubMed] [Google Scholar]
  7. Haydon D. A., Myers V. B. Surface charge, surface dipoles and membrane conductance. Biochim Biophys Acta. 1973 May 25;307(3):429–443. doi: 10.1016/0005-2736(73)90289-7. [DOI] [PubMed] [Google Scholar]
  8. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  9. Hurley J. H., Misra S. Signaling and subcellular targeting by membrane-binding domains. Annu Rev Biophys Biomol Struct. 2000;29:49–79. doi: 10.1146/annurev.biophys.29.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Im W., Seefeld S., Roux B. A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. Biophys J. 2000 Aug;79(2):788–801. doi: 10.1016/S0006-3495(00)76336-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levy R. M., Gallicchio E. Computer simulations with explicit solvent: recent progress in the thermodynamic decomposition of free energies and in modeling electrostatic effects. Annu Rev Phys Chem. 1998;49:531–567. doi: 10.1146/annurev.physchem.49.1.531. [DOI] [PubMed] [Google Scholar]
  12. Liberman E. A., Topaly V. P. Pronitsaemost' bimolekuliarnykh fosfolipidnykh membran dlia zhirorastvorimykh ionov. Biofizika. 1969 May-Jun;14(3):452–461. [PubMed] [Google Scholar]
  13. Lounnas V., Lüdemann S. K., Wade R. C. Towards molecular dynamics simulation of large proteins with a hydration shell at constant pressure. Biophys Chem. 1999 Apr 5;78(1-2):157–182. doi: 10.1016/s0301-4622(98)00237-3. [DOI] [PubMed] [Google Scholar]
  14. Makarov V. A., Feig M., Andrews B. K., Pettitt B. M. Diffusion of solvent around biomolecular solutes: a molecular dynamics simulation study. Biophys J. 1998 Jul;75(1):150–158. doi: 10.1016/S0006-3495(98)77502-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mashl R. J., Scott H. L., Subramaniam S., Jakobsson E. Molecular simulation of dioleoylphosphatidylcholine lipid bilayers at differing levels of hydration. Biophys J. 2001 Dec;81(6):3005–3015. doi: 10.1016/S0006-3495(01)75941-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murray D., Arbuzova A., Hangyás-Mihályné G., Gambhir A., Ben-Tal N., Honig B., McLaughlin S. Electrostatic properties of membranes containing acidic lipids and adsorbed basic peptides: theory and experiment. Biophys J. 1999 Dec;77(6):3176–3188. doi: 10.1016/S0006-3495(99)77148-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pasenkiewicz-Gierula M., Takaoka Y., Miyagawa H., Kitamura K., Kusumi A. Charge pairing of headgroups in phosphatidylcholine membranes: A molecular dynamics simulation study. Biophys J. 1999 Mar;76(3):1228–1240. doi: 10.1016/S0006-3495(99)77286-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roux B. Influence of the membrane potential on the free energy of an intrinsic protein. Biophys J. 1997 Dec;73(6):2980–2989. doi: 10.1016/S0006-3495(97)78327-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ruffle Stuart V., Michalarias Ilias, Li Ji-Chen, Ford Robert C. Inelastic incoherent neutron scattering studies of water interacting with biological macromolecules. J Am Chem Soc. 2002 Jan 30;124(4):565–569. doi: 10.1021/ja016277w. [DOI] [PubMed] [Google Scholar]
  20. Zheng C., Vanderkooi G. Molecular origin of the internal dipole potential in lipid bilayers: calculation of the electrostatic potential. Biophys J. 1992 Oct;63(4):935–941. doi: 10.1016/S0006-3495(92)81673-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES