Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Sep;83(3):1395–1402. doi: 10.1016/S0006-3495(02)73910-6

Fluorescence resonance energy transfers measurements on cell surfaces via fluorescence polarization.

Meir Cohen-Kashi 1, Sergey Moshkov 1, Naomi Zurgil 1, Mordechai Deutsch 1
PMCID: PMC1302238  PMID: 12202365

Abstract

A method has been developed for the determination of the efficiency of fluorescence resonance energy transfer efficiency between moieties located on cell surfaces by performing individual cell fluorescence polarization (FP) measurements. The absolute value of energy transfer efficiency (E) is calculated on an individual cell basis. The examination of this methodology was carried out using model experiments on human T lymphocyte cells. The cells were labeled with fluorescein-conjugated Concanavalin A (ConA) as donor, or rhodamine-conjugated ConA as acceptor. The experiments and results clearly indicate that determination of E via FP measurements is possible, efficient, and more convenient than other methods.

Full Text

The Full Text of this article is available as a PDF (188.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod D. Fluorescence polarization microscopy. Methods Cell Biol. 1989;30:333–352. [PubMed] [Google Scholar]
  2. Chan S. S., Arndt-Jovin D. J., Jovin T. M. Proximity of lectin receptors on the cell surface measured by fluorescence energy transfer in a flow system. J Histochem Cytochem. 1979 Jan;27(1):56–64. doi: 10.1177/27.1.374620. [DOI] [PubMed] [Google Scholar]
  3. Chanh T. C., Alderete B. E. A rapid method for quantitating lymphocyte receptor capping: capping defect in AIDS patients. J Virol Methods. 1990 Sep;29(3):257–265. doi: 10.1016/0166-0934(90)90053-i. [DOI] [PubMed] [Google Scholar]
  4. Damjanovich S., Bähr W., Jovin T. M. The functional and fluorescence properties of Escherichia coli RNA polymerase reacted with fluorescamine. Eur J Biochem. 1977 Feb;72(3):559–569. doi: 10.1111/j.1432-1033.1977.tb11279.x. [DOI] [PubMed] [Google Scholar]
  5. Damjanovich S., Gáspár R., Jr, Pieri C. Dynamic receptor superstructures at the plasma membrane. Q Rev Biophys. 1997 Feb;30(1):67–106. doi: 10.1017/s0033583596003307. [DOI] [PubMed] [Google Scholar]
  6. Epe B., Woolley P., Steinhäuser K. G., Littlechild J. Distance measurement by energy transfer: the 3' end of 16-S RNA and proteins S4 and S17 of the ribosome of Escherichia coli. Eur J Biochem. 1982 Dec;129(1):211–219. doi: 10.1111/j.1432-1033.1982.tb07042.x. [DOI] [PubMed] [Google Scholar]
  7. Fernandez S. M., Berlin R. D. Cell surface distribution of lectin receptors determined by resonance energy transfer. Nature. 1976 Dec 2;264(5585):411–415. doi: 10.1038/264411a0. [DOI] [PubMed] [Google Scholar]
  8. Gennis L. S., Gennis R. B., Cantor C. R. Singlet energy-transfer studies on associating protein systems. Distance measurements on trypsin, -chymotrypsin, and their protein inhibitors. Biochemistry. 1972 Jun 20;11(13):2517–2524. doi: 10.1021/bi00763a021. [DOI] [PubMed] [Google Scholar]
  9. Gennis R. B., Cantor C. R. Use of nonspecific dye labeling for singlet energy-transfer measurements in complex systems. A simple model. Biochemistry. 1972 Jun 20;11(13):2509–2517. doi: 10.1021/bi00763a020. [DOI] [PubMed] [Google Scholar]
  10. Hahn L. H., Hammes G. G. Structural mapping of aspartate transcarbamoylase by fluorescence energy-transfer measurements: determination of the distance between catalytic sites of different subunits. Biochemistry. 1978 Jun 13;17(12):2423–2429. doi: 10.1021/bi00605a027. [DOI] [PubMed] [Google Scholar]
  11. Lindmo T., Steen H. B. Flow cytometric measurement of the polarization of fluorescence from intracellular fluorescein in mammalian cells. Biophys J. 1977 May;18(2):173–187. doi: 10.1016/S0006-3495(77)85606-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lobb R. R., Auld D. S. Stopped-flow radiationless energy transfer kinetics: direct observation of enzyme-substrate complexes at steady state. Biochemistry. 1980 Nov 11;19(23):5297–5302. doi: 10.1021/bi00564a023. [DOI] [PubMed] [Google Scholar]
  13. Luedtke R., Owen C. S., Vanderkooi J. M., Karush F. Proximity relationships within the Fc segment of rabbit immunoglobulin G analyzed by resonance energy transfer. Biochemistry. 1981 May 12;20(10):2927–2936. doi: 10.1021/bi00513a033. [DOI] [PubMed] [Google Scholar]
  14. Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem. 1978;47:819–846. doi: 10.1146/annurev.bi.47.070178.004131. [DOI] [PubMed] [Google Scholar]
  15. Stryer L., Thomas D. D., Meares C. F. Diffusion-enhanced fluorescence energy transfer. Annu Rev Biophys Bioeng. 1982;11:203–222. doi: 10.1146/annurev.bb.11.060182.001223. [DOI] [PubMed] [Google Scholar]
  16. Sunray M., Kaufman M., Zurgil N., Deutsch M. The trace and subgrouping of lymphocyte activation by dynamic fluorescence intensity and polarization measurements. Biochem Biophys Res Commun. 1999 Aug 11;261(3):712–719. doi: 10.1006/bbrc.1999.0304. [DOI] [PubMed] [Google Scholar]
  17. Szöllösi J., Mátyus L., Trón L., Balázs M., Ember I., Fulwyler M. J., Damjanovich S. Flow cytometric measurements of fluorescence energy transfer using single laser excitation. Cytometry. 1987 Mar;8(2):120–128. doi: 10.1002/cyto.990080204. [DOI] [PubMed] [Google Scholar]
  18. Thomas D. D., Stryer L. Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes. J Mol Biol. 1982 Jan 5;154(1):145–157. doi: 10.1016/0022-2836(82)90422-3. [DOI] [PubMed] [Google Scholar]
  19. Trón L., Szöllósi J., Damjanovich S., Helliwell S. H., Arndt-Jovin D. J., Jovin T. M. Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis. Biophys J. 1984 May;45(5):939–946. doi: 10.1016/S0006-3495(84)84240-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Trón L., Szöllösi J., Damjanovich S. Proximity measurements of cell surface proteins by fluorescence energy transfer. Immunol Lett. 1987 Oct;16(1):1–9. doi: 10.1016/0165-2478(87)90052-6. [DOI] [PubMed] [Google Scholar]
  21. Yahara I., Edelman G. M. The effects of concanavalin A on the mobility of lymphocyte surface receptors. Exp Cell Res. 1973 Sep;81(1):143–155. doi: 10.1016/0014-4827(73)90121-3. [DOI] [PubMed] [Google Scholar]
  22. Zukin R. S., Hartig P. R., Koshland D. E., Jr Use of a distant reporter group as evidence for a conformational change in a sensory receptor. Proc Natl Acad Sci U S A. 1977 May;74(5):1932–1936. doi: 10.1073/pnas.74.5.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES