Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Sep;83(3):1421–1428. doi: 10.1016/S0006-3495(02)73913-1

Regulation of nuclear pore complex conformation by IP(3) receptor activation.

David Moore-Nichols 1, Anne Arnott 1, Robert C Dunn 1
PMCID: PMC1302241  PMID: 12202368

Abstract

In recent years, both the molecular architecture and functional dynamics of nuclear pore complexes (NPCs) have been revealed with increasing detail. These large, supramolecular assemblages of proteins form channels that span the nuclear envelope of cells, acting as crucial regulators of nuclear import and export. From the cytoplasmic face of the nuclear envelope, nuclear pore complexes exhibit an eightfold symmetric ring structure encompassing a central lumen. The lumen often appears occupied by an additional structure alternatively referred to as the central granule, nuclear transport complex, or nuclear plug. Previous studies have suggested that the central granule may play a role in mediating calcium-dependent regulation of diffusion across the nuclear envelope for intermediate sized molecules (10-40 kDa). Using atomic force microscopy to measure the surface topography of chemically fixed Xenopus laevis oocyte nuclear envelopes, we present measurements of the relative position of the central granule within the NPC lumen under a variety of conditions known to modify nuclear Ca(2+) stores. These measurements reveal a large, approximately 9-nm displacement of the central granule toward the cytoplasmic face of the nuclear envelope under calcium depleting conditions. Additionally, activation of nuclear inositol triphosphate (IP(3)) receptors by the specific agonist, adenophostin A, results in a concentration-dependent displacement of central granule position with an EC(50) of ~1.2 nM. The displacement of the central granule within the NPC is observed on both the cytoplasmic and nucleoplasmic faces of the nuclear envelope. The displacement is blocked upon treatment with xestospongin C, a specific inhibitor of IP(3) receptor activation. These results extend previous models of NPC conformational dynamics linking central granule position to depletion of IP(3) sensitive nuclear envelope calcium stores.

Full Text

The Full Text of this article is available as a PDF (182.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adkins C. E., Wissing F., Potter B. V., Taylor C. W. Rapid activation and partial inactivation of inositol trisphosphate receptors by adenophostin A. Biochem J. 2000 Dec 15;352(Pt 3):929–933. [PMC free article] [PubMed] [Google Scholar]
  2. Akey C. W. Probing the structure and function of the nuclear pore complex. Semin Cell Biol. 1991 Jun;2(3):167–177. [PubMed] [Google Scholar]
  3. Akey C. W., Radermacher M. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J Cell Biol. 1993 Jul;122(1):1–19. doi: 10.1083/jcb.122.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Akey C. W. Structural plasticity of the nuclear pore complex. J Mol Biol. 1995 Apr 28;248(2):273–293. doi: 10.1016/s0022-2836(95)80050-6. [DOI] [PubMed] [Google Scholar]
  5. Allen T. D., Bennion G. R., Rutherford S. A., Reipert S., Ramalho A., Kiseleva E., Goldberg M. W. Accessing nuclear structure for field emission, in lens, scanning electron microscopy (FEISEM). Scanning Microsc Suppl. 1996;10:149–164. [PubMed] [Google Scholar]
  6. Allen T. D., Bennion G. R., Rutherpord S. A., Reipert S., Ramalho A., Kiseleva E., Goldberg M. W. Macromolecular substructure in nuclear pore complexes by in-lens field-emission scanning electron microscopy. Scanning. 1997 Sep;19(6):403–410. doi: 10.1002/sca.4950190603. [DOI] [PubMed] [Google Scholar]
  7. Allen T. D., Cronshaw J. M., Bagley S., Kiseleva E., Goldberg M. W. The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. J Cell Sci. 2000 May;113(Pt 10):1651–1659. doi: 10.1242/jcs.113.10.1651. [DOI] [PubMed] [Google Scholar]
  8. Bustamante J. O., Liepins A., Prendergast R. A., Hanover J. A., Oberleithner H. Patch clamp and atomic force microscopy demonstrate TATA-binding protein (TBP) interactions with the nuclear pore complex. J Membr Biol. 1995 Aug;146(3):263–272. doi: 10.1007/BF00233946. [DOI] [PubMed] [Google Scholar]
  9. Danker T., Mazzanti M., Tonini R., Rakowska A., Oberleithner H. Using atomic force microscopy to investigate patch-clamped nuclear membrane. Cell Biol Int. 1997 Nov;21(11):747–757. doi: 10.1006/cbir.1997.0219. [DOI] [PubMed] [Google Scholar]
  10. Danker T., Oberleithner H. Nuclear pore function viewed with atomic force microscopy. Pflugers Arch. 2000 Apr;439(6):671–681. doi: 10.1007/s004240000249. [DOI] [PubMed] [Google Scholar]
  11. De Smet P., Parys J. B., Callewaert G., Weidema A. F., Hill E., De Smedt H., Erneux C., Sorrentino V., Missiaen L. Xestospongin C is an equally potent inhibitor of the inositol 1,4,5-trisphosphate receptor and the endoplasmic-reticulum Ca(2+) pumps. Cell Calcium. 1999 Jul-Aug;26(1-2):9–13. doi: 10.1054/ceca.1999.0047. [DOI] [PubMed] [Google Scholar]
  12. Fahrenkrog B., Stoffler D., Aebi U. Nuclear pore complex architecture and functional dynamics. Curr Top Microbiol Immunol. 2001;259:95–117. doi: 10.1007/978-3-642-56597-7_5. [DOI] [PubMed] [Google Scholar]
  13. Forbes D. J. Structure and function of the nuclear pore complex. Annu Rev Cell Biol. 1992;8:495–527. doi: 10.1146/annurev.cb.08.110192.002431. [DOI] [PubMed] [Google Scholar]
  14. Gafni J., Munsch J. A., Lam T. H., Catlin M. C., Costa L. G., Molinski T. F., Pessah I. N. Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron. 1997 Sep;19(3):723–733. doi: 10.1016/s0896-6273(00)80384-0. [DOI] [PubMed] [Google Scholar]
  15. Gant T. M., Goldberg M. W., Allen T. D. Nuclear envelope and nuclear pore assembly: analysis of assembly intermediates by electron microscopy. Curr Opin Cell Biol. 1998 Jun;10(3):409–415. doi: 10.1016/s0955-0674(98)80018-5. [DOI] [PubMed] [Google Scholar]
  16. Goldberg M. W., Allen T. D. High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J Cell Biol. 1992 Dec;119(6):1429–1440. doi: 10.1083/jcb.119.6.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goldberg M. W., Allen T. D. Structural and functional organization of the nuclear envelope. Curr Opin Cell Biol. 1995 Jun;7(3):301–309. doi: 10.1016/0955-0674(95)80083-2. [DOI] [PubMed] [Google Scholar]
  18. Goldberg M. W., Allen T. D. The nuclear pore complex and lamina: three-dimensional structures and interactions determined by field emission in-lens scanning electron microscopy. J Mol Biol. 1996 Apr 12;257(4):848–865. doi: 10.1006/jmbi.1996.0206. [DOI] [PubMed] [Google Scholar]
  19. Goldberg M. W., Allen T. D. The nuclear pore complex: three-dimensional surface structure revealed by field emission, in-lens scanning electron microscopy, with underlying structure uncovered by proteolysis. J Cell Sci. 1993 Sep;106(Pt 1):261–274. doi: 10.1242/jcs.106.1.261. [DOI] [PubMed] [Google Scholar]
  20. Goldberg M. W., Blow J. J., Allen T. D. The use of field emission in-lens scanning electron microscopy to study the steps of assembly of the nuclear envelope in vitro. J Struct Biol. 1992 May-Jun;108(3):257–268. doi: 10.1016/1047-8477(92)90026-7. [DOI] [PubMed] [Google Scholar]
  21. Goldberg M. W., Wiese C., Allen T. D., Wilson K. L. Dimples, pores, star-rings, and thin rings on growing nuclear envelopes: evidence for structural intermediates in nuclear pore complex assembly. J Cell Sci. 1997 Feb;110(Pt 4):409–420. doi: 10.1242/jcs.110.4.409. [DOI] [PubMed] [Google Scholar]
  22. Greber U. F., Gerace L. Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus. J Cell Biol. 1995 Jan;128(1-2):5–14. doi: 10.1083/jcb.128.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Greber U. F., Gerace L. Nuclear protein import is inhibited by an antibody to a lumenal epitope of a nuclear pore complex glycoprotein. J Cell Biol. 1992 Jan;116(1):15–30. doi: 10.1083/jcb.116.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hinshaw J. E. Architecture of the nuclear pore complex and its involvement in nucleocytoplasmic transport. Biochem Pharmacol. 1994 Jan 13;47(1):15–20. doi: 10.1016/0006-2952(94)90432-4. [DOI] [PubMed] [Google Scholar]
  25. Hotoda H., Murayama K., Miyamoto S., Iwata Y., Takahashi M., Kawase Y., Tanzawa K., Kaneko M. Molecular recognition of adenophostin, a very potent Ca2+ inducer, at the D-myo-inositol 1,4,5-trisphosphate receptor. Biochemistry. 1999 Jul 20;38(29):9234–9241. doi: 10.1021/bi990114r. [DOI] [PubMed] [Google Scholar]
  26. Kasamatsu H., Nakanishi A. How do animal DNA viruses get to the nucleus? Annu Rev Microbiol. 1998;52:627–686. doi: 10.1146/annurev.micro.52.1.627. [DOI] [PubMed] [Google Scholar]
  27. Kiseleva E., Goldberg M. W., Cronshaw J., Allen T. D. The nuclear pore complex: structure, function, and dynamics. Crit Rev Eukaryot Gene Expr. 2000;10(1):101–112. [PubMed] [Google Scholar]
  28. Lee M. A., Dunn R. C., Clapham D. E., Stehno-Bittel L. Calcium regulation of nuclear pore permeability. Cell Calcium. 1998 Feb-Mar;23(2-3):91–101. doi: 10.1016/s0143-4160(98)90107-5. [DOI] [PubMed] [Google Scholar]
  29. Mak D. O., Foskett J. K. Single-channel inositol 1,4,5-trisphosphate receptor currents revealed by patch clamp of isolated Xenopus oocyte nuclei. J Biol Chem. 1994 Nov 25;269(47):29375–29378. [PubMed] [Google Scholar]
  30. Mak D. O., Foskett J. K. Single-channel kinetics, inactivation, and spatial distribution of inositol trisphosphate (IP3) receptors in Xenopus oocyte nucleus. J Gen Physiol. 1997 May;109(5):571–587. doi: 10.1085/jgp.109.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mak D. O., McBride S., Foskett J. K. ATP-dependent adenophostin activation of inositol 1,4,5-trisphosphate receptor channel gating: kinetic implications for the durations of calcium puffs in cells. J Gen Physiol. 2001 Apr;117(4):299–314. doi: 10.1085/jgp.117.4.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Marcus-Sekura C. J., Hitchcock M. J. Preparation of oocytes for microinjection of RNA and DNA. Methods Enzymol. 1987;152:284–288. doi: 10.1016/0076-6879(87)52032-8. [DOI] [PubMed] [Google Scholar]
  33. Meier E., Miller B. R., Forbes D. J. Nuclear pore complex assembly studied with a biochemical assay for annulate lamellae formation. J Cell Biol. 1995 Jun;129(6):1459–1472. doi: 10.1083/jcb.129.6.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Murphy C. T., Riley A. M., Lindley C. J., Jenkins D. J., Westwick J., Potter B. V. Structural analogues of D-myo-inositol-1,4,5-trisphosphate and adenophostin A: recognition by cerebellar and platelet inositol-1,4,5-trisphosphate receptors. Mol Pharmacol. 1997 Oct;52(4):741–748. doi: 10.1124/mol.52.4.741. [DOI] [PubMed] [Google Scholar]
  35. Nakanishi M., Akuta T., Nagoshi E., Eguchi A., Mizuguchi H., Senda T. Nuclear targeting of DNA. Eur J Pharm Sci. 2001 Apr;13(1):17–24. doi: 10.1016/s0928-0987(00)00203-7. [DOI] [PubMed] [Google Scholar]
  36. Oberleithner H. Aldosterone and nuclear signaling in kidney. Steroids. 1999 Jan-Feb;64(1-2):42–50. doi: 10.1016/s0039-128x(98)00090-7. [DOI] [PubMed] [Google Scholar]
  37. Oberleithner H., Schneider S., Bustamante J. O. Atomic force microscopy visualizes ATP-dependent dissociation of multimeric TATA-binding protein before translocation into the cell nucleus. Pflugers Arch. 1996 Sep;432(5):839–844. doi: 10.1007/s004240050206. [DOI] [PubMed] [Google Scholar]
  38. Panté N., Aebi U. Molecular dissection of the nuclear pore complex. Crit Rev Biochem Mol Biol. 1996 Apr;31(2):153–199. doi: 10.3109/10409239609106583. [DOI] [PubMed] [Google Scholar]
  39. Panté N., Aebi U. The nuclear pore complex. J Cell Biol. 1993 Sep;122(5):977–984. doi: 10.1083/jcb.122.5.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Panté N., Aebi U. Toward a molecular understanding of the structure and function of the nuclear pore complex. Int Rev Cytol. 1995;162B:225–255. doi: 10.1016/s0074-7696(08)62618-2. [DOI] [PubMed] [Google Scholar]
  41. Perez-Terzic C., Gacy A. M., Bortolon R., Dzeja P. P., Puceat M., Jaconi M., Prendergast F. G., Terzic A. Structural plasticity of the cardiac nuclear pore complex in response to regulators of nuclear import. Circ Res. 1999 Jun 11;84(11):1292–1301. doi: 10.1161/01.res.84.11.1292. [DOI] [PubMed] [Google Scholar]
  42. Perez-Terzic C., Jaconi M., Clapham D. E. Nuclear calcium and the regulation of the nuclear pore complex. Bioessays. 1997 Sep;19(9):787–792. doi: 10.1002/bies.950190908. [DOI] [PubMed] [Google Scholar]
  43. Perez-Terzic C., Pyle J., Jaconi M., Stehno-Bittel L., Clapham D. E. Conformational states of the nuclear pore complex induced by depletion of nuclear Ca2+ stores. Science. 1996 Sep 27;273(5283):1875–1877. doi: 10.1126/science.273.5283.1875. [DOI] [PubMed] [Google Scholar]
  44. Rakowska A., Danker T., Schneider S. W., Oberleithner H. ATP-Induced shape change of nuclear pores visualized with the atomic force microscope. J Membr Biol. 1998 May 15;163(2):129–136. doi: 10.1007/s002329900377. [DOI] [PubMed] [Google Scholar]
  45. Rutherford S. A., Goldberg M. W., Allen T. D. Three-dimensional visualization of the route of protein import: the role of nuclear pore complex substructures. Exp Cell Res. 1997 Apr 10;232(1):146–160. doi: 10.1006/excr.1997.3487. [DOI] [PubMed] [Google Scholar]
  46. Santella L., Carafoli E. Calcium signaling in the cell nucleus. FASEB J. 1997 Nov;11(13):1091–1109. [PubMed] [Google Scholar]
  47. Schneider S., Folprecht G., Krohne G., Oberleithner H. Immunolocalization of lamins and nuclear pore complex proteins by atomic force microscopy. Pflugers Arch. 1995 Sep;430(5):795–801. doi: 10.1007/BF00386178. [DOI] [PubMed] [Google Scholar]
  48. Stehno-Bittel L., Lückhoff A., Clapham D. E. Calcium release from the nucleus by InsP3 receptor channels. Neuron. 1995 Jan;14(1):163–167. doi: 10.1016/0896-6273(95)90250-3. [DOI] [PubMed] [Google Scholar]
  49. Stehno-Bittel L., Perez-Terzic C., Clapham D. E. Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science. 1995 Dec 15;270(5243):1835–1838. doi: 10.1126/science.270.5243.1835. [DOI] [PubMed] [Google Scholar]
  50. Stehno-Bittel L., Perez-Terzic C., Luckhoff A., Clapham D. E. Nuclear ion channels and regulation of the nuclear pore. Soc Gen Physiol Ser. 1996;51:195–207. [PubMed] [Google Scholar]
  51. Stoffler D., Goldie K. N., Feja B., Aebi U. Calcium-mediated structural changes of native nuclear pore complexes monitored by time-lapse atomic force microscopy. J Mol Biol. 1999 Apr 9;287(4):741–752. doi: 10.1006/jmbi.1999.2637. [DOI] [PubMed] [Google Scholar]
  52. Stolz M., Stoffler D., Aebi U., Goldsbury C. Monitoring biomolecular interactions by time-lapse atomic force microscopy. J Struct Biol. 2000 Sep;131(3):171–180. doi: 10.1006/jsbi.2000.4301. [DOI] [PubMed] [Google Scholar]
  53. Strübing C., Clapham D. E. Active nuclear import and export is independent of lumenal Ca2+ stores in intact mammalian cells. J Gen Physiol. 1999 Feb;113(2):239–248. doi: 10.1085/jgp.113.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Takahashi M., Tanzawa K., Takahashi S. Adenophostins, newly discovered metabolites of Penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1994 Jan 7;269(1):369–372. [PubMed] [Google Scholar]
  55. Wang H., Clapham D. E. Conformational changes of the in situ nuclear pore complex. Biophys J. 1999 Jul;77(1):241–247. doi: 10.1016/S0006-3495(99)76885-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Whittaker G. R., Kann M., Helenius A. Viral entry into the nucleus. Annu Rev Cell Dev Biol. 2000;16:627–651. doi: 10.1146/annurev.cellbio.16.1.627. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES