Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Sep;83(3):1443–1454. doi: 10.1016/S0006-3495(02)73915-5

Asymmetrical membranes and surface tension.

Mounir Traïkia 1, Dror E Warschawski 1, Olivier Lambert 1, Jean-Louis Rigaud 1, Philippe F Devaux 1
PMCID: PMC1302243  PMID: 12202370

Abstract

The (31)P-nuclear magnetic resonance chemical shift of phosphatidic acid in a membrane is sensitive to the lipid head group packing and can report qualitatively on membrane lateral compression near the aqueous interface. We have used high-resolution (31)P-nuclear magnetic resonance to evaluate the lateral compression on each side of asymmetrical lipid vesicles. When monooleoylphosphatidylcholine was added to the external monolayer of sonicated vesicles containing dioleoylphosphatidylcholine and dioleoylphosphatidic acid, the variation of (31)P chemical shift of phosphatidic acid indicated a lateral compression in the external monolayer. Simultaneously, a slight dilation was observed in the inner monolayer. In large unilamellar vesicles on the other hand the lateral pressure increased in both monolayers after asymmetrical insertion of monooleoylphosphatidylcholine. This can be explained by assuming that when monooleoylphosphatidylcholine is added to large unilamellar vesicles, the membrane bends until the strain is the same in both monolayers. In the case of sonicated vesicles, a change of curvature is not possible, and therefore differential packing in the two layers remains. We infer that a variation of lipid asymmetry by generating a lateral strain in the membrane can be a physiological way of modulating the conformation of membrane proteins.

Full Text

The Full Text of this article is available as a PDF (666.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benachir T., Lafleur M. Osmotic and pH transmembrane gradients control the lytic power of melittin. Biophys J. 1996 Feb;70(2):831–840. doi: 10.1016/S0006-3495(96)79622-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhamidipati S. P., Hamilton J. A. Interactions of lyso 1-palmitoylphosphatidylcholine with phospholipids: a 13C and 31P NMR study. Biochemistry. 1995 Apr 25;34(16):5666–5677. doi: 10.1021/bi00016a043. [DOI] [PubMed] [Google Scholar]
  3. Bogdanov A., Verhoven B., Schlegel R. A., Williamson P. Asymmetry in trans-bilayer lateral pressure may drive expansion of the secretion fusion pore. Biochem Soc Trans. 1993 May;21(2):271–275. doi: 10.1042/bst0210271. [DOI] [PubMed] [Google Scholar]
  4. Boguslavsky V., Rebecchi M., Morris A. J., Jhon D. Y., Rhee S. G., McLaughlin S. Effect of monolayer surface pressure on the activities of phosphoinositide-specific phospholipase C-beta 1, -gamma 1, and -delta 1. Biochemistry. 1994 Mar 15;33(10):3032–3037. doi: 10.1021/bi00176a036. [DOI] [PubMed] [Google Scholar]
  5. Cantor R. S. The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry. 1997 Mar 4;36(9):2339–2344. doi: 10.1021/bi9627323. [DOI] [PubMed] [Google Scholar]
  6. Chi L. M., Wu W. G. Effective bilayer expansion and erythrocyte shape change induced by monopalmitoyl phosphatidylcholine. Quantitative light microscopy and nuclear magnetic resonance spectroscopy measurements. Biophys J. 1990 Jun;57(6):1225–1232. doi: 10.1016/S0006-3495(90)82641-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Devaux P. F. Is lipid translocation involved during endo- and exocytosis? Biochimie. 2000 May;82(5):497–509. doi: 10.1016/s0300-9084(00)00209-1. [DOI] [PubMed] [Google Scholar]
  8. Devaux P. F. Static and dynamic lipid asymmetry in cell membranes. Biochemistry. 1991 Feb 5;30(5):1163–1173. doi: 10.1021/bi00219a001. [DOI] [PubMed] [Google Scholar]
  9. Dubochet J., Adrian M., Chang J. J., Homo J. C., Lepault J., McDowall A. W., Schultz P. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys. 1988 May;21(2):129–228. doi: 10.1017/s0033583500004297. [DOI] [PubMed] [Google Scholar]
  10. Farge E., Bitbol M., Devaux P. F. Biomembrane elastic response to intercalation of amphiphiles. Eur Biophys J. 1990;19(2):69–72. doi: 10.1007/BF00185088. [DOI] [PubMed] [Google Scholar]
  11. Farge E., Devaux P. F. Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Biophys J. 1992 Feb;61(2):347–357. doi: 10.1016/S0006-3495(92)81841-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fenske D. B., Cullis P. R. Acyl chain orientational order in large unilamellar vesicles: comparison with multilamellar liposomes: a 2H and 31P nuclear magnetic resonance study. Biophys J. 1993 May;64(5):1482–1491. doi: 10.1016/S0006-3495(93)81515-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goulian M., Mesquita O. N., Fygenson D. K., Nielsen C., Andersen O. S., Libchaber A. Gramicidin channel kinetics under tension. Biophys J. 1998 Jan;74(1):328–337. doi: 10.1016/S0006-3495(98)77790-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gruner S. M., Shyamsunder E. Is the mechanism of general anesthesia related to lipid membrane spontaneous curvature? Ann N Y Acad Sci. 1991;625:685–697. doi: 10.1111/j.1749-6632.1991.tb33902.x. [DOI] [PubMed] [Google Scholar]
  15. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 1973 Nov-Dec;28(11):693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  16. Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kumar V. V., Baumann W. J. Lanthanide-induced phosphorus-31 NMR downfield chemical shifts of lysophosphatidylcholines are sensitive to lysophospholipid critical micelle concentration. Biophys J. 1991 Jan;59(1):103–107. doi: 10.1016/S0006-3495(91)82202-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kumar V. V., Malewicz B., Baumann W. J. Lysophosphatidylcholine stabilizes small unilamellar phosphatidylcholine vesicles. Phosphorus-31 NMR evidence for the "wedge" effect. Biophys J. 1989 Apr;55(4):789–792. doi: 10.1016/S0006-3495(89)82877-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kwok R., Evans E. Thermoelasticity of large lecithin bilayer vesicles. Biophys J. 1981 Sep;35(3):637–652. doi: 10.1016/S0006-3495(81)84817-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lehtonen J. Y., Kinnunen P. K. Phospholipase A2 as a mechanosensor. Biophys J. 1995 May;68(5):1888–1894. doi: 10.1016/S0006-3495(95)80366-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MacDonald R. C., Jones F. D., Qiu R. Fragmentation into small vesicles of dioleoylphosphatidylcholine bilayers during freezing and thawing. Biochim Biophys Acta. 1994 May 11;1191(2):362–370. doi: 10.1016/0005-2736(94)90187-2. [DOI] [PubMed] [Google Scholar]
  22. Marsh D. Lateral pressure in membranes. Biochim Biophys Acta. 1996 Oct 29;1286(3):183–223. doi: 10.1016/s0304-4157(96)00009-3. [DOI] [PubMed] [Google Scholar]
  23. Martinac B., Adler J., Kung C. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature. 1990 Nov 15;348(6298):261–263. doi: 10.1038/348261a0. [DOI] [PubMed] [Google Scholar]
  24. Mathivet L., Cribier S., Devaux P. F. Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field. Biophys J. 1996 Mar;70(3):1112–1121. doi: 10.1016/S0006-3495(96)79693-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mayer L. D., Hope M. J., Cullis P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986 Jun 13;858(1):161–168. doi: 10.1016/0005-2736(86)90302-0. [DOI] [PubMed] [Google Scholar]
  26. Miao L, Seifert U, Wortis M, Döbereiner HG. Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Jun;49(6):5389–5407. doi: 10.1103/physreve.49.5389. [DOI] [PubMed] [Google Scholar]
  27. Mui B. L., Döbereiner H. G., Madden T. D., Cullis P. R. Influence of transbilayer area asymmetry on the morphology of large unilamellar vesicles. Biophys J. 1995 Sep;69(3):930–941. doi: 10.1016/S0006-3495(95)79967-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Müller P., Pomorski T., Herrmann A. Incorporation of phospholipid analogues into the plasma membrane affects ATP-induced vesiculation of human erythrocyte ghosts. Biochem Biophys Res Commun. 1994 Mar 15;199(2):881–887. doi: 10.1006/bbrc.1994.1311. [DOI] [PubMed] [Google Scholar]
  29. Needham D., Stoicheva N., Zhelev D. V. Exchange of monooleoylphosphatidylcholine as monomer and micelle with membranes containing poly(ethylene glycol)-lipid. Biophys J. 1997 Nov;73(5):2615–2629. doi: 10.1016/S0006-3495(97)78291-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Needham D., Zhelev D. V. Lysolipid exchange with lipid vesicle membranes. Ann Biomed Eng. 1995 May-Jun;23(3):287–298. doi: 10.1007/BF02584429. [DOI] [PubMed] [Google Scholar]
  31. Raphael R. M., Waugh R. E. Accelerated interleaflet transport of phosphatidylcholine molecules in membranes under deformation. Biophys J. 1996 Sep;71(3):1374–1388. doi: 10.1016/S0006-3495(96)79340-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rauch C., Farge E. Endocytosis switch controlled by transmembrane osmotic pressure and phospholipid number asymmetry. Biophys J. 2000 Jun;78(6):3036–3047. doi: 10.1016/S0006-3495(00)76842-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Romsicki Y., Sharom F. J. Phospholipid flippase activity of the reconstituted P-glycoprotein multidrug transporter. Biochemistry. 2001 Jun 12;40(23):6937–6947. doi: 10.1021/bi0024456. [DOI] [PubMed] [Google Scholar]
  34. Rothnie A., Theron D., Soceneantu L., Martin C., Traikia M., Berridge G., Higgins C. F., Devaux P. F., Callaghan R. The importance of cholesterol in maintenance of P-glycoprotein activity and its membrane perturbing influence. Eur Biophys J. 2001 Oct;30(6):430–442. doi: 10.1007/s002490100156. [DOI] [PubMed] [Google Scholar]
  35. Seifert U, Berndl K, Lipowsky R. Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. Phys Rev A. 1991 Jul 15;44(2):1182–1202. doi: 10.1103/physreva.44.1182. [DOI] [PubMed] [Google Scholar]
  36. Seigneuret M., Devaux P. F. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3751–3755. doi: 10.1073/pnas.81.12.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Svetina S., Zeks B. Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur Biophys J. 1989;17(2):101–111. doi: 10.1007/BF00257107. [DOI] [PubMed] [Google Scholar]
  39. Swairjo M. A., Roberts M. F., Campos M. B., Dedman J. R., Seaton B. A. Annexin V binding to the outer leaflet of small unilamellar vesicles leads to altered inner-leaflet properties: 31P- and 1H-NMR studies. Biochemistry. 1994 Sep 13;33(36):10944–10950. doi: 10.1021/bi00202a013. [DOI] [PubMed] [Google Scholar]
  40. Swairjo M. A., Seaton B. A., Roberts M. F. Effect of vesicle composition and curvature on the dissociation of phosphatidic acid in small unilamellar vesicles--a 31P-NMR study. Biochim Biophys Acta. 1994 May 11;1191(2):354–361. doi: 10.1016/0005-2736(94)90186-4. [DOI] [PubMed] [Google Scholar]
  41. Szoka F., Olson F., Heath T., Vail W., Mayhew E., Papahadjopoulos D. Preparation of unilamellar liposomes of intermediate size (0.1-0.2 mumol) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes. Biochim Biophys Acta. 1980 Oct 2;601(3):559–571. doi: 10.1016/0005-2736(80)90558-1. [DOI] [PubMed] [Google Scholar]
  42. Tocanne J. F., Teissié J. Ionization of phospholipids and phospholipid-supported interfacial lateral diffusion of protons in membrane model systems. Biochim Biophys Acta. 1990 Feb 28;1031(1):111–142. doi: 10.1016/0304-4157(90)90005-w. [DOI] [PubMed] [Google Scholar]
  43. Traikia M., Langlais D. B., Cannarozzi G. M., Devaux P. F. High-resolution spectra of liposomes using MAS NMR. The case of intermediate-size vesicles. J Magn Reson. 1997 Mar;125(1):140–144. doi: 10.1006/jmre.1996.1068. [DOI] [PubMed] [Google Scholar]
  44. Traïkia M., Warschawski D. E., Recouvreur M., Cartaud J., Devaux P. F. Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and 31P-nuclear magnetic resonance. Eur Biophys J. 2000;29(3):184–195. doi: 10.1007/s002490000077. [DOI] [PubMed] [Google Scholar]
  45. Van Echteld C. J., De Kruijff B., Mandersloot J. G., De Gier J. Effects of lysophosphatidylcholines on phosphatidylcholine and phosphatidylcholine/cholesterol liposome systems as revealed by 31P-NMR, electron microscopy and permeability studies. Biochim Biophys Acta. 1981 Dec 7;649(2):211–220. doi: 10.1016/0005-2736(81)90408-9. [DOI] [PubMed] [Google Scholar]
  46. de Kruyff B., van den Besselaar A. M., van Deenen L. L. Outside-inside distribution and translocation of lysophosphatidylcholine in phosphatidylcholine vesicles as determinied by 13C-NMR using (N-13CH3)-enriched lipids. Biochim Biophys Acta. 1977 Mar 17;465(3):443–453. doi: 10.1016/0005-2736(77)90263-2. [DOI] [PubMed] [Google Scholar]
  47. van den Besselaar A. M., van den Bosch H., van Deenen L. L. Transbilayer distribution and movement of lysophosphatidylcholine in liposomal membranes. Biochim Biophys Acta. 1977 Mar 17;465(3):454–465. doi: 10.1016/0005-2736(77)90264-4. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES