Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Sep;83(3):1465–1478. doi: 10.1016/S0006-3495(02)73917-9

A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems.

Wen Guo 1, Volker Kurze 1, Thomas Huber 1, Nezam H Afdhal 1, Klaus Beyer 1, James A Hamilton 1
PMCID: PMC1302245  PMID: 12202372

Abstract

We used solid-state NMR techniques to probe the interactions of cholesterol (Chol) with bovine brain sphingomyelin (SM) and for comparison of the interactions of Chol with dipalmitoylphosphatidylcholine (DPPC), which has a similar gel-to-liquid crystalline transition temperature. (1)H-, (31)P-, and (13)C-MASNMR yielded high-resolution spectra from multilamellar dispersions of unlabeled brain SM and Chol for analysis of chemical shifts and linewidths. In addition, (2)H-NMR spectra of oriented lipid membranes with specific deuterium labels gave information about membrane ordering and mobility. Chol disrupted the gel-phase of pure SM and increased acyl chain ordering in the liquid crystalline phase. As inferred from (13)C chemical shifts, the boundaries between the ordered and disordered liquid crystalline phases (L and L) were similar for SM and DPPC. The solubility limit of Chol in SM was ~50 mol %, the same value as previously reported for DPPC membranes. We found no evidence for specific H-bonding between Chol and the amide group of SM. The order parameters of a probe molecule, d31-sn1-DPPC, in SM were slightly higher than in DPPC for all carbons except the terminal groups at 30 mol % but were not significantly different at 5 and 60 mol % Chol. These studies show a general similarity with some subtle differences in the way Chol interacts with DPPC and SM. In the environment of a typical biomembrane, the higher proportion of saturated fatty acyl chains in SM compared to other phospholipids may be the most significant factor influencing interactions with Chol.

Full Text

The Full Text of this article is available as a PDF (276.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. N., Brown D. A., London E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry. 1997 Sep 9;36(36):10944–10953. doi: 10.1021/bi971167g. [DOI] [PubMed] [Google Scholar]
  2. Aureli T., Di Cocco M. E., Capuani G., Ricciolini R., Manetti C., Miccheli A., Conti F. Effect of long-term feeding with acetyl-L-carnitine on the age-related changes in rat brain lipid composition: a study by 31P NMR spectroscopy. Neurochem Res. 2000 Mar;25(3):395–399. doi: 10.1023/a:1007501306623. [DOI] [PubMed] [Google Scholar]
  3. Bhattacharya S., Haldar S. Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage. Biochim Biophys Acta. 2000 Jul 31;1467(1):39–53. doi: 10.1016/s0005-2736(00)00196-6. [DOI] [PubMed] [Google Scholar]
  4. Bittman R., Kasireddy C. R., Mattjus P., Slotte J. P. Interaction of cholesterol with sphingomyelin in monolayers and vesicles. Biochemistry. 1994 Oct 4;33(39):11776–11781. doi: 10.1021/bi00205a013. [DOI] [PubMed] [Google Scholar]
  5. Bourgès M., Small D. M., Dervichian D. G. Biophysics of lipidic associations. II. The ternary systems: cholesterol-lecithin-water. Biochim Biophys Acta. 1967 Feb 14;137(1):157–167. doi: 10.1016/0005-2760(67)90019-7. [DOI] [PubMed] [Google Scholar]
  6. Calhoun W. I., Shipley G. G. Sphingomyelin--lecithin bilayers and their interaction with cholesterol. Biochemistry. 1979 May 1;18(9):1717–1722. doi: 10.1021/bi00576a013. [DOI] [PubMed] [Google Scholar]
  7. Chao F. F., Blanchette-Mackie E. J., Chen Y. J., Dickens B. F., Berlin E., Amende L. M., Skarlatos S. I., Gamble W., Resau J. H., Mergner W. T. Characterization of two unique cholesterol-rich lipid particles isolated from human atherosclerotic lesions. Am J Pathol. 1990 Jan;136(1):169–179. [PMC free article] [PubMed] [Google Scholar]
  8. Cullis P. R., Hope M. J. The bilayer stabilizing role of sphingomyelin in the presence of cholesterol: a 31P NMR study. Biochim Biophys Acta. 1980 Apr 24;597(3):533–542. doi: 10.1016/0005-2736(80)90225-4. [DOI] [PubMed] [Google Scholar]
  9. Dimitrov O. A., Lalchev Z. I. Interaction of sex hormones and cholesterol with monolayers of dipalmitoylphosphatidylcholine in different phase state. J Steroid Biochem Mol Biol. 1998 Jul;66(1-2):55–61. doi: 10.1016/s0960-0760(98)00002-8. [DOI] [PubMed] [Google Scholar]
  10. Dobrowsky R. T. Sphingolipid signalling domains floating on rafts or buried in caves? Cell Signal. 2000 Feb;12(2):81–90. doi: 10.1016/s0898-6568(99)00072-8. [DOI] [PubMed] [Google Scholar]
  11. Griffin R. G., Powers L., Pershan P. S. Head-group conformation in phospholipids: a phosphorus-31 nuclear magnetic resonance study of oriented monodomain dipalmitoylphosphatidylcholine bilayers. Biochemistry. 1978 Jul 11;17(14):2718–2722. doi: 10.1021/bi00607a004. [DOI] [PubMed] [Google Scholar]
  12. Guo W., Hamilton J. A. 13C MAS NMR studies of crystalline cholesterol and lipid mixtures modeling atherosclerotic plaques. Biophys J. 1996 Nov;71(5):2857–2868. doi: 10.1016/S0006-3495(96)79482-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guo W., Hamilton J. A. A multinuclear solid-state NMR study of phospholipid-cholesterol interactions. Dipalmitoylphosphatidylcholine-cholesterol binary system. Biochemistry. 1995 Oct 31;34(43):14174–14184. doi: 10.1021/bi00043a023. [DOI] [PubMed] [Google Scholar]
  14. Huang J., Buboltz J. T., Feigenson G. W. Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim Biophys Acta. 1999 Feb 4;1417(1):89–100. doi: 10.1016/s0005-2736(98)00260-0. [DOI] [PubMed] [Google Scholar]
  15. Keelan M., Clandinin M. T., Thomson A. B. Refeeding varying fatty acid and cholesterol diets alters phospholipids in rat intestinal brush border membrane. Lipids. 1997 Aug;32(8):895–901. doi: 10.1007/s11745-997-0115-z. [DOI] [PubMed] [Google Scholar]
  16. Kurze V., Steinbauer B., Huber T., Beyer K. A (2)H NMR study of macroscopically aligned bilayer membranes containing interfacial hydroxyl residues. Biophys J. 2000 May;78(5):2441–2451. doi: 10.1016/S0006-3495(00)76788-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lande M. B., Donovan J. M., Zeidel M. L. The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. J Gen Physiol. 1995 Jul;106(1):67–84. doi: 10.1085/jgp.106.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lange Y., D'Alessandro J. S., Small D. M. The affinity of cholesterol for phosphatidylcholine and sphingomyelin. Biochim Biophys Acta. 1979 Oct 5;556(3):388–398. doi: 10.1016/0005-2736(79)90127-5. [DOI] [PubMed] [Google Scholar]
  19. Leppimäki P., Kronqvist R., Slotte J. P. The rate of sphingomyelin synthesis de novo is influenced by the level of cholesterol in cultured human skin fibroblasts. Biochem J. 1998 Oct 15;335(Pt 2):285–291. doi: 10.1042/bj3350285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levi M., Jameson D. M., van der Meer B. W. Role of BBM lipid composition and fluidity in impaired renal Pi transport in aged rat. Am J Physiol. 1989 Jan;256(1 Pt 2):F85–F94. doi: 10.1152/ajprenal.1989.256.1.F85. [DOI] [PubMed] [Google Scholar]
  21. Lewin M. B., Timiras P. S. Lipid changes with aging in cardiac mitochondrial membranes. Mech Ageing Dev. 1984 Mar;24(3):343–351. doi: 10.1016/0047-6374(84)90119-2. [DOI] [PubMed] [Google Scholar]
  22. Lund-Katz S., Laboda H. M., McLean L. R., Phillips M. C. Influence of molecular packing and phospholipid type on rates of cholesterol exchange. Biochemistry. 1988 May 3;27(9):3416–3423. doi: 10.1021/bi00409a044. [DOI] [PubMed] [Google Scholar]
  23. Marsan M. P., Muller I., Ramos C., Rodriguez F., Dufourc E. J., Czaplicki J., Milon A. Cholesterol orientation and dynamics in dimyristoylphosphatidylcholine bilayers: a solid state deuterium NMR analysis. Biophys J. 1999 Jan;76(1 Pt 1):351–359. doi: 10.1016/S0006-3495(99)77202-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McIntosh T. J., Simon S. A., Needham D., Huang C. H. Structure and cohesive properties of sphingomyelin/cholesterol bilayers. Biochemistry. 1992 Feb 25;31(7):2012–2020. doi: 10.1021/bi00122a017. [DOI] [PubMed] [Google Scholar]
  25. Needham D., Nunn R. S. Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys J. 1990 Oct;58(4):997–1009. doi: 10.1016/S0006-3495(90)82444-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Neuringer L. J., Sears B., Jungalwala F. B., Shriver E. K. Difference in orientational order in phospholipid and sphingomyelin bilayers. FEBS Lett. 1979 Aug 1;104(1):173–175. doi: 10.1016/0014-5793(79)81109-6. [DOI] [PubMed] [Google Scholar]
  27. Ohvo H., Slotte J. P. Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate. Biochemistry. 1996 Jun 18;35(24):8018–8024. doi: 10.1021/bi9528816. [DOI] [PubMed] [Google Scholar]
  28. Oldfield E., Chapman D. Effects of cholesterol and cholesterol derivatives on hydrocarbon chain mobility in lipids. Biochem Biophys Res Commun. 1971 May 7;43(3):610–616. doi: 10.1016/0006-291x(71)90658-9. [DOI] [PubMed] [Google Scholar]
  29. Oldfield E., Meadows M., Rice D., Jacobs R. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems. Biochemistry. 1978 Jul 11;17(14):2727–2740. doi: 10.1021/bi00607a006. [DOI] [PubMed] [Google Scholar]
  30. Prisco D., Rogasi P. G., Matucci M., Paniccia R., Abbate R., Gensini G. F., Serneri G. G. Age related changes in platelet lipid composition. Thromb Res. 1986 Nov 15;44(4):427–437. doi: 10.1016/0049-3848(86)90321-x. [DOI] [PubMed] [Google Scholar]
  31. Röper K., Corbeil D., Huttner W. B. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol. 2000 Sep;2(9):582–592. doi: 10.1038/35023524. [DOI] [PubMed] [Google Scholar]
  32. Sankaram M. B., Thompson T. E. Cholesterol-induced fluid-phase immiscibility in membranes. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8686–8690. doi: 10.1073/pnas.88.19.8686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sankaram M. B., Thompson T. E. Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry. 1990 Nov 27;29(47):10670–10675. doi: 10.1021/bi00499a014. [DOI] [PubMed] [Google Scholar]
  34. Schmidt C. F., Barenholz Y., Thompson T. E. A nuclear magnetic resonance study of sphingomyelin in bilayer systems. Biochemistry. 1977 Jun 14;16(12):2649–2656. doi: 10.1021/bi00631a011. [DOI] [PubMed] [Google Scholar]
  35. Schroeder F., Nemecz G. Interaction of sphingomyelins and phosphatidylcholines with fluorescent dehydroergosterol. Biochemistry. 1989 Jul 11;28(14):5992–6000. doi: 10.1021/bi00440a041. [DOI] [PubMed] [Google Scholar]
  36. Seelig A., Seelig J. Effect of a single cis double bond on the structures of a phospholipid bilayer. Biochemistry. 1977 Jan 11;16(1):45–50. doi: 10.1021/bi00620a008. [DOI] [PubMed] [Google Scholar]
  37. Shepherd J. C., Büldt G. The influence of cholesterol on head group mobility in phospholipid membranes. Biochim Biophys Acta. 1979 Nov 16;558(1):41–47. doi: 10.1016/0005-2736(79)90313-4. [DOI] [PubMed] [Google Scholar]
  38. Shipley G. G., Avecilla L. S., Small D. M. Phase behavior and structure of aqueous dispersions of sphingomyelin. J Lipid Res. 1974 Mar;15(2):124–131. [PubMed] [Google Scholar]
  39. Simons K., Ikonen E. How cells handle cholesterol. Science. 2000 Dec 1;290(5497):1721–1726. doi: 10.1126/science.290.5497.1721. [DOI] [PubMed] [Google Scholar]
  40. Slotte J. P. Enzyme-catalyzed oxidation of cholesterol in mixed phospholipid monolayers reveals the stoichiometry at which free cholesterol clusters disappear. Biochemistry. 1992 Jun 23;31(24):5472–5477. doi: 10.1021/bi00139a008. [DOI] [PubMed] [Google Scholar]
  41. Tulenko T. N., Chen M., Mason P. E., Mason R. P. Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. J Lipid Res. 1998 May;39(5):947–956. [PubMed] [Google Scholar]
  42. Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES