Abstract
We analyzed the influence of water activity on the lateral self-diffusion of supported phospholipid monolayers. Lipid monolayer membranes were supported by polysaccharide cushions (chitosan and agarose), or glass. A simple diffusion model was derived, based on activated diffusion with an activation energy, E(a), which depends on the hydration state of the lipid headgroup. A crucial assumption of the derived model is that E(a) can be calculated assuming an exponential decay of the humidity-dependent disjoining pressure in the monolayer/substrate interface with respect to the equilibrium separation distance. A plot of ln(D) against ln(p(0)/p), where D is the measured diffusion coefficient and p(0) and p are the partial water pressures at saturation and at a particular relative humidity, respectively, was observed to be linear in all cases (i.e., for differing lipids, lateral monolayer pressures, temperatures, and substrates), in accordance with the above-mentioned diffusion model. No indications for humidity-induced first-order phase transitions in the supported phospholipid monolayers were found. Many biological processes such as vesicle fusion and recognition processes involve dehydration/hydration cycles, and it can be expected that the water activity significantly affects the kinetics of these processes in a manner similar to that examined in the present work.
Full Text
The Full Text of this article is available as a PDF (676.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balcom B. J., Petersen N. O. Lateral diffusion in model membranes is independent of the size of the hydrophobic region of molecules. Biophys J. 1993 Aug;65(2):630–637. doi: 10.1016/S0006-3495(93)81106-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chattopadhyay A. Chemistry and biology of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: fluorescent probes of biological and model membranes. Chem Phys Lipids. 1990 Mar;53(1):1–15. doi: 10.1016/0009-3084(90)90128-e. [DOI] [PubMed] [Google Scholar]
- Chi L. F., Anders M., Fuchs H., Johnston R. R., Ringsdorf H. Domain structures in langmuir-blodgett films investigated by atomic force microscopy. Science. 1993 Jan 8;259(5092):213–216. doi: 10.1126/science.259.5092.213. [DOI] [PubMed] [Google Scholar]
- Cowley A. C., Fuller N. L., Rand R. P., Parsegian V. A. Measurement of repulsive forces between charged phospholipid bilayers. Biochemistry. 1978 Jul 25;17(15):3163–3168. doi: 10.1021/bi00608a034. [DOI] [PubMed] [Google Scholar]
- Dietrich C., Tampé R. Charge determination of membrane molecules in polymer-supported lipid layers. Biochim Biophys Acta. 1995 Sep 13;1238(2):183–191. doi: 10.1016/0005-2736(95)00129-q. [DOI] [PubMed] [Google Scholar]
- Galla H. J., Hartmann W., Theilen U., Sackmann E. On two-dimensional passive random walk in lipid bilayers and fluid pathways in biomembranes. J Membr Biol. 1979 Jul 31;48(3):215–236. doi: 10.1007/BF01872892. [DOI] [PubMed] [Google Scholar]
- Galle J., Volke F. Computer simulation of the temperature- and hydration-dependent lateral diffusion of phosphatidylcholine in lipid bilayers. Biophys Chem. 1995 Apr;54(2):109–117. doi: 10.1016/0301-4622(94)00123-2. [DOI] [PubMed] [Google Scholar]
- Ho C., Stubbs C. D. Effect of n-alkanols on lipid bilayer hydration. Biochemistry. 1997 Sep 2;36(35):10630–10637. doi: 10.1021/bi9703150. [DOI] [PubMed] [Google Scholar]
- Kühner M., Tampé R., Sackmann E. Lipid mono- and bilayer supported on polymer films: composite polymer-lipid films on solid substrates. Biophys J. 1994 Jul;67(1):217–226. doi: 10.1016/S0006-3495(94)80472-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leikin S., Parsegian V. A., Rau D. C., Rand R. P. Hydration forces. Annu Rev Phys Chem. 1993;44:369–395. doi: 10.1146/annurev.pc.44.100193.002101. [DOI] [PubMed] [Google Scholar]
- Lindsey H., Petersen N. O., Chan S. I. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. Biochim Biophys Acta. 1979 Jul 19;555(1):147–167. doi: 10.1016/0005-2736(79)90079-8. [DOI] [PubMed] [Google Scholar]
- Marsh D. Water adsorption isotherms and hydration forces for lysolipids and diacyl phospholipids. Biophys J. 1989 Jun;55(6):1093–1100. doi: 10.1016/S0006-3495(89)82906-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCown J. T., Evans E., Diehl S., Wiles H. C. Degree of hydration and lateral diffusion in phospholipid multibilayers. Biochemistry. 1981 May 26;20(11):3134–3138. doi: 10.1021/bi00514a023. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Magid A. D., Simon S. A. Range of the solvation pressure between lipid membranes: dependence on the packing density of solvent molecules. Biochemistry. 1989 Sep 19;28(19):7904–7912. doi: 10.1021/bi00445a053. [DOI] [PubMed] [Google Scholar]
- Möhwald H. Phospholipid and phospholipid-protein monolayers at the air/water interface. Annu Rev Phys Chem. 1990;41:441–476. doi: 10.1146/annurev.pc.41.100190.002301. [DOI] [PubMed] [Google Scholar]
- Parsegian V. A., Fuller N., Rand R. P. Measured work of deformation and repulsion of lecithin bilayers. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2750–2754. doi: 10.1073/pnas.76.6.2750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters R., Beck K. Translational diffusion in phospholipid monolayers measured by fluorescence microphotolysis. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7183–7187. doi: 10.1073/pnas.80.23.7183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pink D. A. Theoretical studies of phospholipid bilayers and monolayers. Perturbing probes, monolayer phase transitions, and computer simulations of lipid-protein bilayers. Can J Biochem Cell Biol. 1984 Aug;62(8):760–777. doi: 10.1139/o84-098. [DOI] [PubMed] [Google Scholar]
- Riegler JE, LeGrange JD. Observation of a monolayer phase transition on the meniscus in a Langmuir-Blodgett transfer configuration. Phys Rev Lett. 1988 Nov 21;61(21):2492–2495. doi: 10.1103/PhysRevLett.61.2492. [DOI] [PubMed] [Google Scholar]
- Sackmann E. Supported membranes: scientific and practical applications. Science. 1996 Jan 5;271(5245):43–48. doi: 10.1126/science.271.5245.43. [DOI] [PubMed] [Google Scholar]
- Sackmann E., Tanaka M. Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol. 2000 Feb;18(2):58–64. doi: 10.1016/s0167-7799(99)01412-2. [DOI] [PubMed] [Google Scholar]
- Saxton M. J. Lateral diffusion in an archipelago. Effects of impermeable patches on diffusion in a cell membrane. Biophys J. 1982 Aug;39(2):165–173. doi: 10.1016/S0006-3495(82)84504-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sirota E. B., Smith G. S., Safinya C. R., Plano R. J., Clark N. A. X-ray Scattering Studies of Aligned, Stacked Surfactant Membranes. Science. 1988 Dec 9;242(4884):1406–1409. doi: 10.1126/science.242.4884.1406. [DOI] [PubMed] [Google Scholar]