Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Sep;83(3):1525–1534. doi: 10.1016/S0006-3495(02)73922-2

Rapid transbilayer movement of the fluorescent sterol dehydroergosterol in lipid membranes.

Karin John 1, Janek Kubelt 1, Peter Müller 1, Daniel Wüstner 1, Andreas Herrmann 1
PMCID: PMC1302250  PMID: 12202377

Abstract

This study establishes a new assay for measuring the transbilayer movement of dehydroergosterol (DHE) in lipid membranes. The assay is based on the rapid extraction of DHE by methyl-beta-cyclodextrin (M-CD) from liposomes. The concentration of DHE in the liposomal membrane was measured by using fluorescence resonance energy transfer (FRET) from DHE to dansyl-phosphatidylethanolamine, which is not extracted from liposomes by M-CD. The method was applied to small (SUV) and large (LUV) unilamellar vesicles of different compositions and at various temperatures. From the kinetics of FRET changes upon extraction of DHE from membranes, rates of M-CD mediated extraction and flip-flop of DHE could be deduced and were found to be dependent on the physical state of the lipid phase. For egg phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine in the liquid-crystalline state, halftimes of extraction and transbilayer movement were <5 s and approximately 20-50 s, respectively, at 10 degrees C. For 1,2-dimyristoyl-sn-glycero-3-phosphocholine-SUV being in the gel state at 10 degrees C, the respective halftimes were 28 s and 5-8 min. Surprisingly, DHE could not be extracted from LUV consisting of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. This might be an indication of specific interactions between DHE molecules in membranes depending on the phospholipid composition of the membrane.

Full Text

The Full Text of this article is available as a PDF (215.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Backer J. M., Dawidowicz E. A. The rapid transmembrane movement of cholesterol in small unilamellar vesicles. Biochim Biophys Acta. 1979 Mar 8;551(2):260–270. doi: 10.1016/0005-2736(89)90004-7. [DOI] [PubMed] [Google Scholar]
  2. Backer J. M., Dawidowicz E. A. Transmembrane movement of cholesterol in small unilamellar vesicles detected by cholesterol oxidase. J Biol Chem. 1981 Jan 25;256(2):586–588. [PubMed] [Google Scholar]
  3. Brasaemle D. L., Robertson A. D., Attie A. D. Transbilayer movement of cholesterol in the human erythrocyte membrane. J Lipid Res. 1988 Apr;29(4):481–489. [PubMed] [Google Scholar]
  4. Brown D. A., London E. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol. 1998 Jul 15;164(2):103–114. doi: 10.1007/s002329900397. [DOI] [PubMed] [Google Scholar]
  5. Brown R. E. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci. 1998 Jan;111(Pt 1):1–9. doi: 10.1242/jcs.111.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng K. H., Virtanen J., Somerharju P. Fluorescence studies of dehydroergosterol in phosphatidylethanolamine/phosphatidylcholine bilayers. Biophys J. 1999 Dec;77(6):3108–3119. doi: 10.1016/S0006-3495(99)77141-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dietrich C., Bagatolli L. A., Volovyk Z. N., Thompson N. L., Levi M., Jacobson K., Gratton E. Lipid rafts reconstituted in model membranes. Biophys J. 2001 Mar;80(3):1417–1428. doi: 10.1016/S0006-3495(01)76114-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hale J. E., Schroeder F. Asymmetric transbilayer distribution of sterol across plasma membranes determined by fluorescence quenching of dehydroergosterol. Eur J Biochem. 1982 Mar 1;122(3):649–661. doi: 10.1111/j.1432-1033.1982.tb06488.x. [DOI] [PubMed] [Google Scholar]
  9. Harris J. S., Epps D. E., Davio S. R., Kézdy F. J. Evidence for transbilayer, tail-to-tail cholesterol dimers in dipalmitoylglycerophosphocholine liposomes. Biochemistry. 1995 Mar 21;34(11):3851–3857. doi: 10.1021/bi00011a043. [DOI] [PubMed] [Google Scholar]
  10. Haynes M. P., Phillips M. C., Rothblat G. H. Efflux of cholesterol from different cellular pools. Biochemistry. 2000 Apr 18;39(15):4508–4517. doi: 10.1021/bi992125q. [DOI] [PubMed] [Google Scholar]
  11. Kan C. C., Yan J., Bittman R. Rates of spontaneous exchange of synthetic radiolabeled sterols between lipid vesicles. Biochemistry. 1992 Feb 18;31(6):1866–1874. doi: 10.1021/bi00121a040. [DOI] [PubMed] [Google Scholar]
  12. Kilsdonk E. P., Yancey P. G., Stoudt G. W., Bangerter F. W., Johnson W. J., Phillips M. C., Rothblat G. H. Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem. 1995 Jul 21;270(29):17250–17256. doi: 10.1074/jbc.270.29.17250. [DOI] [PubMed] [Google Scholar]
  13. Lange Y., Dolde J., Steck T. L. The rate of transmembrane movement of cholesterol in the human erythrocyte. J Biol Chem. 1981 Jun 10;256(11):5321–5323. [PubMed] [Google Scholar]
  14. Lawn R. M., Wade D. P., Garvin M. R., Wang X., Schwartz K., Porter J. G., Seilhamer J. J., Vaughan A. M., Oram J. F. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest. 1999 Oct;104(8):R25–R31. doi: 10.1172/JCI8119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leventis R., Silvius J. R. Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol. Biophys J. 2001 Oct;81(4):2257–2267. doi: 10.1016/S0006-3495(01)75873-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. London E., Brown D. A. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta. 2000 Nov 23;1508(1-2):182–195. doi: 10.1016/s0304-4157(00)00007-1. [DOI] [PubMed] [Google Scholar]
  17. Loura L. M., Prieto M. Dehydroergosterol structural organization in aqueous medium and in a model system of membranes. Biophys J. 1997 May;72(5):2226–2236. doi: 10.1016/S0006-3495(97)78866-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Marx U., Lassmann G., Holzhütter H. G., Wüstner D., Müller P., Höhlig A., Kubelt J., Herrmann A. Rapid flip-flop of phospholipids in endoplasmic reticulum membranes studied by a stopped-flow approach. Biophys J. 2000 May;78(5):2628–2640. doi: 10.1016/S0006-3495(00)76807-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Matyash V., Geier C., Henske A., Mukherjee S., Hirsh D., Thiele C., Grant B., Maxfield F. R., Kurzchalia T. V. Distribution and transport of cholesterol in Caenorhabditis elegans. Mol Biol Cell. 2001 Jun;12(6):1725–1736. doi: 10.1091/mbc.12.6.1725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mukherjee S., Chattopadhyay A. Membrane organization at low cholesterol concentrations: a study using 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled cholesterol. Biochemistry. 1996 Jan 30;35(4):1311–1322. doi: 10.1021/bi951953q. [DOI] [PubMed] [Google Scholar]
  21. Mukherjee S., Zha X., Tabas I., Maxfield F. R. Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J. 1998 Oct;75(4):1915–1925. doi: 10.1016/S0006-3495(98)77632-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ohvo-Rekilä H., Akerlund B., Slotte J. P. Cyclodextrin-catalyzed extraction of fluorescent sterols from monolayer membranes and small unilamellar vesicles. Chem Phys Lipids. 2000 Apr;105(2):167–178. doi: 10.1016/s0009-3084(00)00122-5. [DOI] [PubMed] [Google Scholar]
  23. Ohvo H., Slotte J. P. Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate. Biochemistry. 1996 Jun 18;35(24):8018–8024. doi: 10.1021/bi9528816. [DOI] [PubMed] [Google Scholar]
  24. Poznansky M. J., Lange Y. Transbilayer movement of cholesterol in phospholipid vesicles under equilibrium and non-equilibrium conditions. Biochim Biophys Acta. 1978 Jan 19;506(2):256–264. doi: 10.1016/0005-2736(78)90396-6. [DOI] [PubMed] [Google Scholar]
  25. Poznansky M., Lange Y. Transbilayer movement of cholesterol in dipalmitoyllecithin-cholesterol vesicles. Nature. 1976 Feb 5;259(5542):420–421. doi: 10.1038/259420a0. [DOI] [PubMed] [Google Scholar]
  26. Rodrigueza W. V., Wheeler J. J., Klimuk S. K., Kitson C. N., Hope M. J. Transbilayer movement and net flux of cholesterol and cholesterol sulfate between liposomal membranes. Biochemistry. 1995 May 9;34(18):6208–6217. doi: 10.1021/bi00018a025. [DOI] [PubMed] [Google Scholar]
  27. Rukmini R., Rawat S. S., Biswas S. C., Chattopadhyay A. Cholesterol organization in membranes at low concentrations: effects of curvature stress and membrane thickness. Biophys J. 2001 Oct;81(4):2122–2134. doi: 10.1016/S0006-3495(01)75860-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schroeder F., Nemecz G., Wood W. G., Joiner C., Morrot G., Ayraut-Jarrier M., Devaux P. F. Transmembrane distribution of sterol in the human erythrocyte. Biochim Biophys Acta. 1991 Jul 22;1066(2):183–192. doi: 10.1016/0005-2736(91)90185-b. [DOI] [PubMed] [Google Scholar]
  29. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  30. Wrenn S. P., Kaler E. W., Lee S. P. A fluorescence energy transfer study of lecithin-cholesterol vesicles in the presence of phospholipase C. J Lipid Res. 1999 Aug;40(8):1483–1494. [PubMed] [Google Scholar]
  31. Yancey P. G., Rodrigueza W. V., Kilsdonk E. P., Stoudt G. W., Johnson W. J., Phillips M. C., Rothblat G. H. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration Of kinetic pools and mechanism of efflux. J Biol Chem. 1996 Jul 5;271(27):16026–16034. doi: 10.1074/jbc.271.27.16026. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES