Abstract
The energetics, protein dynamics, and diffusion coefficients of three mutants of photoactive yellow protein, R52Q, P68A, and W119G, were studied by the transient grating and pulsed laser-induced photoacoustic method. We observed a new dynamics with a lifetime of approximately 1 micro s in the transient grating signal, which is silent by the light absorption technique. This fact indicates that, after the structure change around the chromophore is completed (pR(1)), the protein part located far from the chromophore is still moving to finally create another pR (pR(2)) species, which can transform to the next intermediate, pB. Although the kinetics of pR(2)-->pB-->pG are very different depending on the mutants, the enthalpies of the first long-lived (in micro seconds, 100-micro s range) intermediate species (pR(2)) are similar and very high for all mutants. The diffusion coefficients of the parent (pG) and pB species of the mutants are also similar to that of the wild-type photoactive yellow protein. From the temperature dependence of the volume change, the difference in the thermal expansion coefficients taken as indicator of the flexibility of the structure between pG and pR(2) is measured. They are also similar to that of the wild-type photoactive yellow protein. These results suggest that the protein structures of pR(2) and pB in these mutants are globally different from that of pG, and this structural change is not altered so much by the single amino acid residue mutation. This is consistent with the partially unfolded nature of these intermediate species. On the other hand, the volume changes during pR(1)-->pR(2) are sensitive to the mutations, which may suggest that the volume change reflects a rather local character of the structure, such as the chromophore-protein interaction.
Full Text
The Full Text of this article is available as a PDF (218.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baca M., Borgstahl G. E., Boissinot M., Burke P. M., Williams D. R., Slater K. A., Getzoff E. D. Complete chemical structure of photoactive yellow protein: novel thioester-linked 4-hydroxycinnamyl chromophore and photocycle chemistry. Biochemistry. 1994 Dec 6;33(48):14369–14377. doi: 10.1021/bi00252a001. [DOI] [PubMed] [Google Scholar]
- Borgstahl G. E., Williams D. R., Getzoff E. D. 1.4 A structure of photoactive yellow protein, a cytosolic photoreceptor: unusual fold, active site, and chromophore. Biochemistry. 1995 May 16;34(19):6278–6287. doi: 10.1021/bi00019a004. [DOI] [PubMed] [Google Scholar]
- Brudler R., Rammelsberg R., Woo T. T., Getzoff E. D., Gerwert K. Structure of the I1 early intermediate of photoactive yellow protein by FTIR spectroscopy. Nat Struct Biol. 2001 Mar;8(3):265–270. doi: 10.1038/85021. [DOI] [PubMed] [Google Scholar]
- Craven C. J., Derix N. M., Hendriks J., Boelens R., Hellingwerf K. J., Kaptein R. Probing the nature of the blue-shifted intermediate of photoactive yellow protein in solution by NMR: hydrogen-deuterium exchange data and pH studies. Biochemistry. 2000 Nov 28;39(47):14392–14399. doi: 10.1021/bi001628p. [DOI] [PubMed] [Google Scholar]
- Devanathan S., Pacheco A., Ujj L., Cusanovich M., Tollin G., Lin S., Woodbury N. Femtosecond spectroscopic observations of initial intermediates in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila. Biophys J. 1999 Aug;77(2):1017–1023. doi: 10.1016/S0006-3495(99)76952-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Düx P., Rubinstenn G., Vuister G. W., Boelens R., Mulder F. A., Hård K., Hoff W. D., Kroon A. R., Crielaard W., Hellingwerf K. J. Solution structure and backbone dynamics of the photoactive yellow protein. Biochemistry. 1998 Sep 15;37(37):12689–12699. doi: 10.1021/bi9806652. [DOI] [PubMed] [Google Scholar]
- Genick U. K., Borgstahl G. E., Ng K., Ren Z., Pradervand C., Burke P. M., Srajer V., Teng T. Y., Schildkamp W., McRee D. E. Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science. 1997 Mar 7;275(5305):1471–1475. doi: 10.1126/science.275.5305.1471. [DOI] [PubMed] [Google Scholar]
- Genick U. K., Devanathan S., Meyer T. E., Canestrelli I. L., Williams E., Cusanovich M. A., Tollin G., Getzoff E. D. Active site mutants implicate key residues for control of color and light cycle kinetics of photoactive yellow protein. Biochemistry. 1997 Jan 7;36(1):8–14. doi: 10.1021/bi9622884. [DOI] [PubMed] [Google Scholar]
- Heremans K., Smeller L. Protein structure and dynamics at high pressure. Biochim Biophys Acta. 1998 Aug 18;1386(2):353–370. doi: 10.1016/s0167-4838(98)00102-2. [DOI] [PubMed] [Google Scholar]
- Hoff W. D., Düx P., Hård K., Devreese B., Nugteren-Roodzant I. M., Crielaard W., Boelens R., Kaptein R., van Beeumen J., Hellingwerf K. J. Thiol ester-linked p-coumaric acid as a new photoactive prosthetic group in a protein with rhodopsin-like photochemistry. Biochemistry. 1994 Nov 29;33(47):13959–13962. doi: 10.1021/bi00251a001. [DOI] [PubMed] [Google Scholar]
- Hoff W. D., van Stokkum I. H., van Ramesdonk H. J., van Brederode M. E., Brouwer A. M., Fitch J. C., Meyer T. E., van Grondelle R., Hellingwerf K. J. Measurement and global analysis of the absorbance changes in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila. Biophys J. 1994 Oct;67(4):1691–1705. doi: 10.1016/S0006-3495(94)80643-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imamoto Y., Kataoka M., Tokunaga F., Asahi T., Masuhara H. Primary photoreaction of photoactive yellow protein studied by subpicosecond-nanosecond spectroscopy. Biochemistry. 2001 May 22;40(20):6047–6052. doi: 10.1021/bi002437p. [DOI] [PubMed] [Google Scholar]
- Imamoto Y., Kataoka M., Tokunaga F. Photoreaction cycle of photoactive yellow protein from Ectothiorhodospira halophila studied by low-temperature spectroscopy. Biochemistry. 1996 Nov 12;35(45):14047–14053. doi: 10.1021/bi961342d. [DOI] [PubMed] [Google Scholar]
- Imamoto Y., Koshimizu H., Mihara K., Hisatomi O., Mizukami T., Tsujimoto K., Kataoka M., Tokunaga F. Roles of amino acid residues near the chromophore of photoactive yellow protein. Biochemistry. 2001 Apr 17;40(15):4679–4685. doi: 10.1021/bi002291u. [DOI] [PubMed] [Google Scholar]
- Kandori H., Iwata T., Hendriks J., Maeda A., Hellingwerf K. J. Water structural changes involved in the activation process of photoactive yellow protein. Biochemistry. 2000 Jul 11;39(27):7902–7909. doi: 10.1021/bi000357f. [DOI] [PubMed] [Google Scholar]
- Koh M., Van Driessche G., Samyn B., Hoff W. D., Meyer T. E., Cusanovich M. A., Van Beeumen J. J. Sequence evidence for strong conservation of the photoactive yellow proteins from the halophilic phototrophic bacteria Chromatium salexigens and Rhodospirillum salexigens. Biochemistry. 1996 Feb 27;35(8):2526–2534. doi: 10.1021/bi951494t. [DOI] [PubMed] [Google Scholar]
- Meyer T. E. Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium Ectothiorhodospira halophila. Biochim Biophys Acta. 1985 Jan 23;806(1):175–183. doi: 10.1016/0005-2728(85)90094-5. [DOI] [PubMed] [Google Scholar]
- Mihara K., Hisatomi O., Imamoto Y., Kataoka M., Tokunaga F. Functional expression and site-directed mutagenesis of photoactive yellow protein. J Biochem. 1997 May;121(5):876–880. doi: 10.1093/oxfordjournals.jbchem.a021668. [DOI] [PubMed] [Google Scholar]
- Nishioku Y., Nakagawa M., Tsuda M., Terazima M. A spectrally silent transformation in the photolysis of octopus rhodopsin: a protein conformational change without any accompanying change of the chromophore's absorption. Biophys J. 2001 Jun;80(6):2922–2927. doi: 10.1016/S0006-3495(01)76257-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohishi S., Shimizu N., Mihara K., Imamoto Y., Kataoka M. Light induces destabilization of photoactive yellow protein. Biochemistry. 2001 Mar 6;40(9):2854–2859. doi: 10.1021/bi001846i. [DOI] [PubMed] [Google Scholar]
- Rubinstenn G., Vuister G. W., Mulder F. A., Düx P. E., Boelens R., Hellingwerf K. J., Kaptein R. Structural and dynamic changes of photoactive yellow protein during its photocycle in solution. Nat Struct Biol. 1998 Jul;5(7):568–570. doi: 10.1038/823. [DOI] [PubMed] [Google Scholar]
- Takeshita Kan, Imamoto Yasushi, Kataoka Mikio, Tokunaga Fumio, Terazima Masahide. Themodynamic and transport properties of intermediate states of the photocyclic reaction of photoactive yellow protein. Biochemistry. 2002 Mar 5;41(9):3037–3048. doi: 10.1021/bi0110600. [DOI] [PubMed] [Google Scholar]
- Ujj L., Devanathan S., Meyer T. E., Cusanovich M. A., Tollin G., Atkinson G. H. New photocycle intermediates in the photoactive yellow protein from Ectothiorhodospira halophila: picosecond transient absorption spectroscopy. Biophys J. 1998 Jul;75(1):406–412. doi: 10.1016/S0006-3495(98)77525-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Brederode M. E., Hoff W. D., Van Stokkum I. H., Groot M. L., Hellingwerf K. J. Protein folding thermodynamics applied to the photocycle of the photoactive yellow protein. Biophys J. 1996 Jul;71(1):365–380. doi: 10.1016/S0006-3495(96)79234-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie A., Kelemen L., Hendriks J., White B. J., Hellingwerf K. J., Hoff W. D. Formation of a new buried charge drives a large-amplitude protein quake in photoreceptor activation. Biochemistry. 2001 Feb 13;40(6):1510–1517. doi: 10.1021/bi002449a. [DOI] [PubMed] [Google Scholar]
- van Brederode M. E., Gensch T., Hoff W. D., Hellingwerf K. J., Braslavsky S. E. Photoinduced volume change and energy storage associated with the early transformations of the photoactive yellow protein from Ectothiorhodospira halophila. Biophys J. 1995 Mar;68(3):1101–1109. doi: 10.1016/S0006-3495(95)80284-5. [DOI] [PMC free article] [PubMed] [Google Scholar]