Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Sep;83(3):1595–1612. doi: 10.1016/S0006-3495(02)73929-5

Relationship between ion pair geometries and electrostatic strengths in proteins.

Sandeep Kumar 1, Ruth Nussinov 1
PMCID: PMC1302257  PMID: 12202384

Abstract

The electrostatic free energy contribution of an ion pair in a protein depends on two factors, geometrical orientation of the side-chain charged groups with respect to each other and the structural context of the ion pair in the protein. Conformers in NMR ensembles enable studies of the relationship between geometry and electrostatic strengths of ion pairs, because the protein structural contexts are highly similar across different conformers. We have studied this relationship using a dataset of 22 unique ion pairs in 14 NMR conformer ensembles for 11 nonhomologous proteins. In different NMR conformers, the ion pairs are classified as salt bridges, nitrogen-oxygen (N-O) bridges and longer-range ion pairs on the basis of geometrical criteria. In salt bridges, centroids of the side-chain charged groups and at least a pair of side-chain nitrogen and oxygen atoms of the ion-pairing residues are within a 4 A distance. In N-O bridges, at least a pair of the side-chain nitrogen and oxygen atoms of the ion-pairing residues are within 4 A distance, but the distance between the side-chain charged group centroids is greater than 4 A. In the longer-range ion pairs, the side-chain charged group centroids as well as the side-chain nitrogen and oxygen atoms are more than 4 A apart. Continuum electrostatic calculations indicate that most of the ion pairs have stabilizing electrostatic contributions when their side-chain charged group centroids are within 5 A distance. Hence, most (approximately 92%) of the salt bridges and a majority (68%) of the N-O bridges are stabilizing. Most (approximately 89%) of the destabilizing ion pairs are the longer-range ion pairs. In the NMR conformer ensembles, the electrostatic interaction between side-chain charged groups of the ion-pairing residues is the strongest for salt bridges, considerably weaker for N-O bridges, and the weakest for longer-range ion pairs. These results suggest empirical rules for stabilizing electrostatic interactions in proteins.

Full Text

The Full Text of this article is available as a PDF (259.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avis J. M., Allain F. H., Howe P. W., Varani G., Nagai K., Neuhaus D. Solution structure of the N-terminal RNP domain of U1A protein: the role of C-terminal residues in structure stability and RNA binding. J Mol Biol. 1996 Mar 29;257(2):398–411. doi: 10.1006/jmbi.1996.0171. [DOI] [PubMed] [Google Scholar]
  2. Banci L., Bertini I., Huber J. G., Spyroulias G. A., Turano P. Solution structure of reduced horse heart cytochrome c. J Biol Inorg Chem. 1999 Feb;4(1):21–31. doi: 10.1007/s007750050285. [DOI] [PubMed] [Google Scholar]
  3. Barlow D. J., Thornton J. M. Ion-pairs in proteins. J Mol Biol. 1983 Aug 25;168(4):867–885. doi: 10.1016/s0022-2836(83)80079-5. [DOI] [PubMed] [Google Scholar]
  4. Barril X., Alemán C., Orozco M., Luque F. J. Salt bridge interactions: stability of the ionic and neutral complexes in the gas phase, in solution, and in proteins. Proteins. 1998 Jul 1;32(1):67–79. doi: 10.1002/(sici)1097-0134(19980701)32:1<67::aid-prot8>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  5. Bellsolell L., Prieto J., Serrano L., Coll M. Magnesium binding to the bacterial chemotaxis protein CheY results in large conformational changes involving its functional surface. J Mol Biol. 1994 May 13;238(4):489–495. doi: 10.1006/jmbi.1994.1308. [DOI] [PubMed] [Google Scholar]
  6. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  7. Bewley C. A., Gustafson K. R., Boyd M. R., Covell D. G., Bax A., Clore G. M., Gronenborn A. M. Solution structure of cyanovirin-N, a potent HIV-inactivating protein. Nat Struct Biol. 1998 Jul;5(7):571–578. doi: 10.1038/828. [DOI] [PubMed] [Google Scholar]
  8. Cutler R. L., Davies A. M., Creighton S., Warshel A., Moore G. R., Smith M., Mauk A. G. Role of arginine-38 in regulation of the cytochrome c oxidation-reduction equilibrium. Biochemistry. 1989 Apr 18;28(8):3188–3197. doi: 10.1021/bi00434a012. [DOI] [PubMed] [Google Scholar]
  9. Dao-pin S., Anderson D. E., Baase W. A., Dahlquist F. W., Matthews B. W. Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozyme. Biochemistry. 1991 Dec 10;30(49):11521–11529. doi: 10.1021/bi00113a006. [DOI] [PubMed] [Google Scholar]
  10. Elcock A. H. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J Mol Biol. 1998 Nov 27;284(2):489–502. doi: 10.1006/jmbi.1998.2159. [DOI] [PubMed] [Google Scholar]
  11. Fersht A. R. Conformational equilibria in -and -chymotrypsin. The energetics and importance of the salt bridge. J Mol Biol. 1972 Mar 14;64(2):497–509. doi: 10.1016/0022-2836(72)90513-x. [DOI] [PubMed] [Google Scholar]
  12. Gallagher T., Alexander P., Bryan P., Gilliland G. L. Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry. 1994 Apr 19;33(15):4721–4729. [PubMed] [Google Scholar]
  13. Grimsley G. R., Shaw K. L., Fee L. R., Alston R. W., Huyghues-Despointes B. M., Thurlkill R. L., Scholtz J. M., Pace C. N. Increasing protein stability by altering long-range coulombic interactions. Protein Sci. 1999 Sep;8(9):1843–1849. doi: 10.1110/ps.8.9.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gronenborn A. M., Filpula D. R., Essig N. Z., Achari A., Whitlow M., Wingfield P. T., Clore G. M. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science. 1991 Aug 9;253(5020):657–661. doi: 10.1126/science.1871600. [DOI] [PubMed] [Google Scholar]
  15. Hendsch Z. S., Tidor B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 1994 Feb;3(2):211–226. doi: 10.1002/pro.5560030206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  17. Horovitz A., Fersht A. R. Co-operative interactions during protein folding. J Mol Biol. 1992 Apr 5;224(3):733–740. doi: 10.1016/0022-2836(92)90557-z. [DOI] [PubMed] [Google Scholar]
  18. Hwang J. K., Warshel A. Why ion pair reversal by protein engineering is unlikely to succeed. Nature. 1988 Jul 21;334(6179):270–272. doi: 10.1038/334270a0. [DOI] [PubMed] [Google Scholar]
  19. Ippel H., Larsson G., Behravan G., Zdunek J., Lundqvist M., Schleucher J., Lycksell P. O., Wijmenga S. The solution structure of the homeodomain of the rat insulin-gene enhancer protein isl-1. Comparison with other homeodomains. J Mol Biol. 1999 May 14;288(4):689–703. doi: 10.1006/jmbi.1999.2718. [DOI] [PubMed] [Google Scholar]
  20. Jablonsky M. J., Jackson P. L., Trent J. O., Watt D. D., Krishna N. R. Solution structure of a beta-neurotoxin from the New World scorpion Centruroides sculpturatus Ewing. Biochem Biophys Res Commun. 1999 Jan 19;254(2):406–412. doi: 10.1006/bbrc.1998.9904. [DOI] [PubMed] [Google Scholar]
  21. Kawamura S., Tanaka I., Yamasaki N., Kimura M. Contribution of a salt bridge to the thermostability of DNA binding protein HU from Bacillus stearothermophilus determined by site-directed mutagenesis. J Biochem. 1997 Mar;121(3):448–455. doi: 10.1093/oxfordjournals.jbchem.a021609. [DOI] [PubMed] [Google Scholar]
  22. Kelley L. A., Gardner S. P., Sutcliffe M. J. An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Eng. 1996 Nov;9(11):1063–1065. doi: 10.1093/protein/9.11.1063. [DOI] [PubMed] [Google Scholar]
  23. Kombo D. C., Young M. A., Beveridge D. L. One nanosecond molecular dynamics simulation of the N-terminal domain of the lambda repressor protein. Biopolymers. 2000 Jun;53(7):596–605. doi: 10.1002/(SICI)1097-0282(200006)53:7<596::AID-BIP6>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  24. Kumar S., Bansal M. Dissecting alpha-helices: position-specific analysis of alpha-helices in globular proteins. Proteins. 1998 Jun 1;31(4):460–476. doi: 10.1002/(sici)1097-0134(19980601)31:4<460::aid-prot12>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  25. Kumar S., Ma B., Tsai C. J., Nussinov R. Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers. Proteins. 2000 Mar 1;38(4):368–383. doi: 10.1002/(sici)1097-0134(20000301)38:4<368::aid-prot3>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  26. Kumar S., Nussinov R. Fluctuations between stabilizing and destabilizing electrostatic contributions of ion pairs in conformers of the c-Myc-Max leucine zipper. Proteins. 2000 Dec 1;41(4):485–497. [PubMed] [Google Scholar]
  27. Kumar S., Nussinov R. Fluctuations in ion pairs and their stabilities in proteins. Proteins. 2001 Jun 1;43(4):433–454. doi: 10.1002/prot.1056. [DOI] [PubMed] [Google Scholar]
  28. Kumar S., Nussinov R. How do thermophilic proteins deal with heat? Cell Mol Life Sci. 2001 Aug;58(9):1216–1233. doi: 10.1007/PL00000935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kumar S., Nussinov R. Salt bridge stability in monomeric proteins. J Mol Biol. 1999 Nov 12;293(5):1241–1255. doi: 10.1006/jmbi.1999.3218. [DOI] [PubMed] [Google Scholar]
  30. Kumar S., Tsai C. J., Nussinov R. Factors enhancing protein thermostability. Protein Eng. 2000 Mar;13(3):179–191. doi: 10.1093/protein/13.3.179. [DOI] [PubMed] [Google Scholar]
  31. Kumar S., Tsai C. J., Nussinov R. Thermodynamic differences among homologous thermophilic and mesophilic proteins. Biochemistry. 2001 Nov 27;40(47):14152–14165. doi: 10.1021/bi0106383. [DOI] [PubMed] [Google Scholar]
  32. Lebbink J. H., Knapp S., van der Oost J., Rice D., Ladenstein R., de Vos W. M. Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. I. Introduction of a six-residue ion-pair network in the hinge region. J Mol Biol. 1998 Jul 10;280(2):287–296. doi: 10.1006/jmbi.1998.1870. [DOI] [PubMed] [Google Scholar]
  33. Lebbink J. H., Knapp S., van der Oost J., Rice D., Ladenstein R., de Vos W. M. Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. II: construction of a 16-residue ion-pair network at the subunit interface. J Mol Biol. 1999 Jun 4;289(2):357–369. doi: 10.1006/jmbi.1999.2779. [DOI] [PubMed] [Google Scholar]
  34. Lounnas V., Wade R. C. Exceptionally stable salt bridges in cytochrome P450cam have functional roles. Biochemistry. 1997 May 6;36(18):5402–5417. doi: 10.1021/bi9622940. [DOI] [PubMed] [Google Scholar]
  35. Marqusee S., Sauer R. T. Contributions of a hydrogen bond/salt bridge network to the stability of secondary and tertiary structure in lambda repressor. Protein Sci. 1994 Dec;3(12):2217–2225. doi: 10.1002/pro.5560031207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Moy F. J., Lowry D. F., Matsumura P., Dahlquist F. W., Krywko J. E., Domaille P. J. Assignments, secondary structure, global fold, and dynamics of chemotaxis Y protein using three- and four-dimensional heteronuclear (13C,15N) NMR spectroscopy. Biochemistry. 1994 Sep 6;33(35):10731–10742. doi: 10.1021/bi00201a022. [DOI] [PubMed] [Google Scholar]
  37. Musafia B., Buchner V., Arad D. Complex salt bridges in proteins: statistical analysis of structure and function. J Mol Biol. 1995 Dec 8;254(4):761–770. doi: 10.1006/jmbi.1995.0653. [DOI] [PubMed] [Google Scholar]
  38. Nielsen J. E., Andersen K. V., Honig B., Hooft R. W., Klebe G., Vriend G., Wade R. C. Improving macromolecular electrostatics calculations. Protein Eng. 1999 Aug;12(8):657–662. doi: 10.1093/protein/12.8.657. [DOI] [PubMed] [Google Scholar]
  39. Nilges M., Macias M. J., O'Donoghue S. I., Oschkinat H. Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. J Mol Biol. 1997 Jun 13;269(3):408–422. doi: 10.1006/jmbi.1997.1044. [DOI] [PubMed] [Google Scholar]
  40. Ogata K., Morikawa S., Nakamura H., Hojo H., Yoshimura S., Zhang R., Aimoto S., Ametani Y., Hirata Z., Sarai A. Comparison of the free and DNA-complexed forms of the DNA-binding domain from c-Myb. Nat Struct Biol. 1995 Apr;2(4):309–320. doi: 10.1038/nsb0495-309. [DOI] [PubMed] [Google Scholar]
  41. Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
  42. Pérez-Alvarado G. C., Kosa J. L., Louis H. A., Beckerle M. C., Winge D. R., Summers M. F. Structure of the cysteine-rich intestinal protein, CRIP. J Mol Biol. 1996 Mar 22;257(1):153–174. doi: 10.1006/jmbi.1996.0153. [DOI] [PubMed] [Google Scholar]
  43. Read C. M., Cary P. D., Crane-Robinson C., Driscoll P. C., Norman D. G. Solution structure of a DNA-binding domain from HMG1. Nucleic Acids Res. 1993 Jul 25;21(15):3427–3436. doi: 10.1093/nar/21.15.3427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schutz C. N., Warshel A. What are the dielectric "constants" of proteins and how to validate electrostatic models? Proteins. 2001 Sep 1;44(4):400–417. doi: 10.1002/prot.1106. [DOI] [PubMed] [Google Scholar]
  45. Sham Y. Y., Muegge I., Warshel A. The effect of protein relaxation on charge-charge interactions and dielectric constants of proteins. Biophys J. 1998 Apr;74(4):1744–1753. doi: 10.1016/S0006-3495(98)77885-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sheinerman F. B., Norel R., Honig B. Electrostatic aspects of protein-protein interactions. Curr Opin Struct Biol. 2000 Apr;10(2):153–159. doi: 10.1016/s0959-440x(00)00065-8. [DOI] [PubMed] [Google Scholar]
  47. Singh U. C. Probing the salt bridge in the dihydrofolate reductase-methotrexate complex by using the coordinate-coupled free-energy perturbation method. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4280–4284. doi: 10.1073/pnas.85.12.4280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Spector S., Wang M., Carp S. A., Robblee J., Hendsch Z. S., Fairman R., Tidor B., Raleigh D. P. Rational modification of protein stability by the mutation of charged surface residues. Biochemistry. 2000 Feb 8;39(5):872–879. doi: 10.1021/bi992091m. [DOI] [PubMed] [Google Scholar]
  49. Spek E. J., Bui A. H., Lu M., Kallenbach N. R. Surface salt bridges stabilize the GCN4 leucine zipper. Protein Sci. 1998 Nov;7(11):2431–2437. doi: 10.1002/pro.5560071121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sterner R., Liebl W. Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol. 2001;36(1):39–106. doi: 10.1080/20014091074174. [DOI] [PubMed] [Google Scholar]
  51. Strop P., Mayo S. L. Contribution of surface salt bridges to protein stability. Biochemistry. 2000 Feb 15;39(6):1251–1255. doi: 10.1021/bi992257j. [DOI] [PubMed] [Google Scholar]
  52. Volz K., Matsumura P. Crystal structure of Escherichia coli CheY refined at 1.7-A resolution. J Biol Chem. 1991 Aug 15;266(23):15511–15519. doi: 10.2210/pdb3chy/pdb. [DOI] [PubMed] [Google Scholar]
  53. Waldburger C. D., Jonsson T., Sauer R. T. Barriers to protein folding: formation of buried polar interactions is a slow step in acquisition of structure. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2629–2634. doi: 10.1073/pnas.93.7.2629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Waldburger C. D., Schildbach J. F., Sauer R. T. Are buried salt bridges important for protein stability and conformational specificity? Nat Struct Biol. 1995 Feb;2(2):122–128. doi: 10.1038/nsb0295-122. [DOI] [PubMed] [Google Scholar]
  55. Warshel A., Papazyan A. Electrostatic effects in macromolecules: fundamental concepts and practical modeling. Curr Opin Struct Biol. 1998 Apr;8(2):211–217. doi: 10.1016/s0959-440x(98)80041-9. [DOI] [PubMed] [Google Scholar]
  56. Warshel A., Russell S. T. Calculations of electrostatic interactions in biological systems and in solutions. Q Rev Biophys. 1984 Aug;17(3):283–422. doi: 10.1017/s0033583500005333. [DOI] [PubMed] [Google Scholar]
  57. Xiao L., Honig B. Electrostatic contributions to the stability of hyperthermophilic proteins. J Mol Biol. 1999 Jun 25;289(5):1435–1444. doi: 10.1006/jmbi.1999.2810. [DOI] [PubMed] [Google Scholar]
  58. Xu D., Lin S. L., Nussinov R. Protein binding versus protein folding: the role of hydrophilic bridges in protein associations. J Mol Biol. 1997 Jan 10;265(1):68–84. doi: 10.1006/jmbi.1996.0712. [DOI] [PubMed] [Google Scholar]
  59. Xu D., Tsai C. J., Nussinov R. Hydrogen bonds and salt bridges across protein-protein interfaces. Protein Eng. 1997 Sep;10(9):999–1012. doi: 10.1093/protein/10.9.999. [DOI] [PubMed] [Google Scholar]
  60. Yang F., Bewley C. A., Louis J. M., Gustafson K. R., Boyd M. R., Gronenborn A. M., Clore G. M., Wlodawer A. Crystal structure of cyanovirin-N, a potent HIV-inactivating protein, shows unexpected domain swapping. J Mol Biol. 1999 May 7;288(3):403–412. doi: 10.1006/jmbi.1999.2693. [DOI] [PubMed] [Google Scholar]
  61. Yip K. S., Stillman T. J., Britton K. L., Artymiuk P. J., Baker P. J., Sedelnikova S. E., Engel P. C., Pasquo A., Chiaraluce R., Consalvi V. The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure. 1995 Nov 15;3(11):1147–1158. doi: 10.1016/s0969-2126(01)00251-9. [DOI] [PubMed] [Google Scholar]
  62. de Bakker P. I., Hünenberger P. H., McCammon J. A. Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability. J Mol Biol. 1999 Jan 29;285(4):1811–1830. doi: 10.1006/jmbi.1998.2397. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES