Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Sep;83(3):1613–1619. doi: 10.1016/S0006-3495(02)73930-1

Cooperativity and specificity of association of a designed transmembrane peptide.

Holly Gratkowski 1, Qing-Hong Dai 1, A Joshua Wand 1, William F DeGrado 1, James D Lear 1
PMCID: PMC1302258  PMID: 12202385

Abstract

Thermodynamics studies aimed at quantitatively characterizing free energy effects of amino acid substitutions are not restricted to two state systems, but do require knowing the number of states involved in the equilibrium under consideration. Using analytical ultracentrifugation and NMR methods, we show here that a membrane-soluble peptide, MS1, designed by modifying the sequence of the water-soluble coiled-coil GCN4-P1, exhibits a reversible monomer-dimer-trimer association in detergent micelles with a greater degree of cooperativity in C14-betaine than in dodecyl phosphocholine detergents.

Full Text

The Full Text of this article is available as a PDF (135.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkin I. T., Adams P. D., Brünger A. T., Aimoto S., Engelman D. M., Smith S. O. Structure of the transmembrane cysteine residues in phospholamban. J Membr Biol. 1997 Feb 1;155(3):199–206. doi: 10.1007/s002329900172. [DOI] [PubMed] [Google Scholar]
  2. Arkin M., Lear J. D. A new data analysis method to determine binding constants of small molecules to proteins using equilibrium analytical ultracentrifugation with absorption optics. Anal Biochem. 2001 Dec 1;299(1):98–107. doi: 10.1006/abio.2001.5396. [DOI] [PubMed] [Google Scholar]
  3. Betz S., Fairman R., O'Neil K., Lear J., Degrado W. Design of two-stranded and three-stranded coiled-coil peptides. Philos Trans R Soc Lond B Biol Sci. 1995 Apr 29;348(1323):81–88. doi: 10.1098/rstb.1995.0048. [DOI] [PubMed] [Google Scholar]
  4. Boice J. A., Dieckmann G. R., DeGrado W. F., Fairman R. Thermodynamic analysis of a designed three-stranded coiled coil. Biochemistry. 1996 Nov 19;35(46):14480–14485. doi: 10.1021/bi961831d. [DOI] [PubMed] [Google Scholar]
  5. Chen G. Q., Gouaux E. Probing the folding and unfolding of wild-type and mutant forms of bacteriorhodopsin in micellar solutions: evaluation of reversible unfolding conditions. Biochemistry. 1999 Nov 16;38(46):15380–15387. doi: 10.1021/bi9909039. [DOI] [PubMed] [Google Scholar]
  6. Choma C., Gratkowski H., Lear J. D., DeGrado W. F. Asparagine-mediated self-association of a model transmembrane helix. Nat Struct Biol. 2000 Feb;7(2):161–166. doi: 10.1038/72440. [DOI] [PubMed] [Google Scholar]
  7. Cornea R. L., Jones L. R., Autry J. M., Thomas D. D. Mutation and phosphorylation change the oligomeric structure of phospholamban in lipid bilayers. Biochemistry. 1997 Mar 11;36(10):2960–2967. doi: 10.1021/bi961955q. [DOI] [PubMed] [Google Scholar]
  8. Epstein M., Racker E. Reconstitution of carbamylcholine-dependent sodium ion flux and desensitization of the acetylcholine receptor from Torpedo californica. J Biol Chem. 1978 Oct 10;253(19):6660–6662. [PubMed] [Google Scholar]
  9. Fisher L. E., Engelman D. M., Sturgis J. N. Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain. J Mol Biol. 1999 Oct 29;293(3):639–651. doi: 10.1006/jmbi.1999.3126. [DOI] [PubMed] [Google Scholar]
  10. Fleming K. G., Ackerman A. L., Engelman D. M. The effect of point mutations on the free energy of transmembrane alpha-helix dimerization. J Mol Biol. 1997 Sep 19;272(2):266–275. doi: 10.1006/jmbi.1997.1236. [DOI] [PubMed] [Google Scholar]
  11. Fleming K. G., Engelman D. M. Specificity in transmembrane helix-helix interactions can define a hierarchy of stability for sequence variants. Proc Natl Acad Sci U S A. 2001 Nov 27;98(25):14340–14344. doi: 10.1073/pnas.251367498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Friedrichs M. S., Mueller L., Wittekind M. An automated procedure for the assignment of protein 1HN, 15N, 13C alpha, 1H alpha, 13C beta and 1H beta resonances. J Biomol NMR. 1994 Sep;4(5):703–726. doi: 10.1007/BF00404279. [DOI] [PubMed] [Google Scholar]
  13. Garavito R. M., Ferguson-Miller S. Detergents as tools in membrane biochemistry. J Biol Chem. 2001 Jun 29;276(35):32403–32406. doi: 10.1074/jbc.R100031200. [DOI] [PubMed] [Google Scholar]
  14. Gonzalez L., Jr, Brown R. A., Richardson D., Alber T. Crystal structures of a single coiled-coil peptide in two oligomeric states reveal the basis for structural polymorphism. Nat Struct Biol. 1996 Dec;3(12):1002–1009. doi: 10.1038/nsb1296-1002. [DOI] [PubMed] [Google Scholar]
  15. Gonzalez L., Jr, Plecs J. J., Alber T. An engineered allosteric switch in leucine-zipper oligomerization. Nat Struct Biol. 1996 Jun;3(6):510–515. doi: 10.1038/nsb0696-510. [DOI] [PubMed] [Google Scholar]
  16. Gonzalez L., Jr, Woolfson D. N., Alber T. Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat Struct Biol. 1996 Dec;3(12):1011–1018. doi: 10.1038/nsb1296-1011. [DOI] [PubMed] [Google Scholar]
  17. Gratkowski H., Lear J. D., DeGrado W. F. Polar side chains drive the association of model transmembrane peptides. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):880–885. doi: 10.1073/pnas.98.3.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harbury P. B., Zhang T., Kim P. S., Alber T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science. 1993 Nov 26;262(5138):1401–1407. doi: 10.1126/science.8248779. [DOI] [PubMed] [Google Scholar]
  19. Junius F. K., Mackay J. P., Bubb W. A., Jensen S. A., Weiss A. S., King G. F. Nuclear magnetic resonance characterization of the Jun leucine zipper domain: unusual properties of coiled-coil interfacial polar residues. Biochemistry. 1995 May 9;34(18):6164–6174. doi: 10.1021/bi00018a020. [DOI] [PubMed] [Google Scholar]
  20. Kharakoz D. P. Partial volumes and compressibilities of extended polypeptide chains in aqueous solution: additivity scheme and implication of protein unfolding at normal and high pressure. Biochemistry. 1997 Aug 19;36(33):10276–10285. doi: 10.1021/bi961781c. [DOI] [PubMed] [Google Scholar]
  21. Kochendoerfer G. G., Salom D., Lear J. D., Wilk-Orescan R., Kent S. B., DeGrado W. F. Total chemical synthesis of the integral membrane protein influenza A virus M2: role of its C-terminal domain in tetramer assembly. Biochemistry. 1999 Sep 14;38(37):11905–11913. doi: 10.1021/bi990720m. [DOI] [PubMed] [Google Scholar]
  22. Lear J. D., Gratkowski H., DeGrado W. F. De novo design, synthesis and characterization of membrane-active peptides. Biochem Soc Trans. 2001 Aug;29(Pt 4):559–564. doi: 10.1042/bst0290559. [DOI] [PubMed] [Google Scholar]
  23. Lemmon M. A., Flanagan J. M., Hunt J. F., Adair B. D., Bormann B. J., Dempsey C. E., Engelman D. M. Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J Biol Chem. 1992 Apr 15;267(11):7683–7689. [PubMed] [Google Scholar]
  24. Li M., Reddy L. G., Bennett R., Silva N. D., Jr, Jones L. R., Thomas D. D. A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. Biophys J. 1999 May;76(5):2587–2599. doi: 10.1016/S0006-3495(99)77411-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
  26. Sakaguchi T., Tu Q., Pinto L. H., Lamb R. A. The active oligomeric state of the minimalistic influenza virus M2 ion channel is a tetramer. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5000–5005. doi: 10.1073/pnas.94.10.5000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Salom D., Hill B. R., Lear J. D., DeGrado W. F. pH-dependent tetramerization and amantadine binding of the transmembrane helix of M2 from the influenza A virus. Biochemistry. 2000 Nov 21;39(46):14160–14170. doi: 10.1021/bi001799u. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Scott C. P., Kashlan O. B., Lear J. D., Cooperman B. S. A quantitative model for allosteric control of purine reduction by murine ribonucleotide reductase. Biochemistry. 2001 Feb 13;40(6):1651–1661. doi: 10.1021/bi002335z. [DOI] [PubMed] [Google Scholar]
  29. Tanford C., Reynolds J. A. Characterization of membrane proteins in detergent solutions. Biochim Biophys Acta. 1976 Oct 26;457(2):133–170. doi: 10.1016/0304-4157(76)90009-5. [DOI] [PubMed] [Google Scholar]
  30. Thompson K. S., Vinson C. R., Freire E. Thermodynamic characterization of the structural stability of the coiled-coil region of the bZIP transcription factor GCN4. Biochemistry. 1993 Jun 1;32(21):5491–5496. doi: 10.1021/bi00072a001. [DOI] [PubMed] [Google Scholar]
  31. Wieprecht T., Apostolov O., Beyermann M., Seelig J. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium. J Mol Biol. 1999 Dec 3;294(3):785–794. doi: 10.1006/jmbi.1999.3268. [DOI] [PubMed] [Google Scholar]
  32. Zhou F. X., Cocco M. J., Russ W. P., Brunger A. T., Engelman D. M. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat Struct Biol. 2000 Feb;7(2):154–160. doi: 10.1038/72430. [DOI] [PubMed] [Google Scholar]
  33. Zhou Y., Lau F. W., Nauli S., Yang D., Bowie J. U. Inactivation mechanism of the membrane protein diacylglycerol kinase in detergent solution. Protein Sci. 2001 Feb;10(2):378–383. doi: 10.1110/ps.34201. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES