Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Sep;83(3):1682–1690. doi: 10.1016/S0006-3495(02)73936-2

Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient.

Kerry M Hanson 1, Martin J Behne 1, Nicholas P Barry 1, Theodora M Mauro 1, Enrico Gratton 1, Robert M Clegg 1
PMCID: PMC1302264  PMID: 12202391

Abstract

Two-photon fluorescence lifetime imaging is used to identify microdomains (1-25 microm) of two distinct pH values within the uppermost layer of the epidermis (stratum corneum). The fluorophore used is 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), whose lifetime tau (pH 4.5, tau = 2.75 ns; pH 8.5, tau = 3.90 ns) is pH dependent over the pH range of the stratum corneum (pH 4.5 to pH 7.2). Hairless mice (SKH1-hrBR) are used as a model for human skin. Images (< or =50 microm x 50 microm) are acquired every 1.7 microm from the stratum corneum surface to the first viable layer (stratum granulosum). Acidic microdomains (average pH 6.0) of variable size (~1 microm in diameter with variable length) are detected within the extracellular matrix of the stratum corneum, whereas the intracellular space of the corneocytes in mid-stratum corneum (25 microm diameter) approaches neutrality (average pH 7.0). The surface is acidic. The average pH of the stratum corneum increases with depth because of a decrease in the ratio of acidic to neutral regions within the stratum corneum. The data definitively show that the stratum corneum acid mantle results from the presence of aqueous acidic pockets within the lipid-rich extracellular matrix.

Full Text

The Full Text of this article is available as a PDF (531.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Christophers E. Cellular architecture of the stratum corneum. J Invest Dermatol. 1971 Mar;56(3):165–169. doi: 10.1111/1523-1747.ep12260765. [DOI] [PubMed] [Google Scholar]
  2. Dikstein S., Zlotogorski A. Measurement of skin pH. Acta Derm Venereol Suppl (Stockh) 1994;185:18–20. [PubMed] [Google Scholar]
  3. Fushimi K., Verkman A. S. Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry. J Cell Biol. 1991 Feb;112(4):719–725. doi: 10.1083/jcb.112.4.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Knüttel A., Boehlau-Godau M. Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography. J Biomed Opt. 2000 Jan;5(1):83–92. doi: 10.1117/1.429972. [DOI] [PubMed] [Google Scholar]
  5. Krien P. M., Kermici M. Evidence for the existence of a self-regulated enzymatic process within the human stratum corneum -an unexpected role for urocanic acid. J Invest Dermatol. 2000 Sep;115(3):414–420. doi: 10.1046/j.1523-1747.2000.00083.x. [DOI] [PubMed] [Google Scholar]
  6. Lieckfeldt R., Villalaín J., Gómez-Fernández J. C., Lee G. Apparent pKa of the fatty acids within ordered mixtures of model human stratum corneum lipids. Pharm Res. 1995 Nov;12(11):1614–1617. doi: 10.1023/a:1016280714593. [DOI] [PubMed] [Google Scholar]
  7. Luby-Phelps K., Mujumdar S., Mujumdar R. B., Ernst L. A., Galbraith W., Waggoner A. S. A novel fluorescence ratiometric method confirms the low solvent viscosity of the cytoplasm. Biophys J. 1993 Jul;65(1):236–242. doi: 10.1016/S0006-3495(93)81075-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mackenzie J. C. Ordered structure of the stratum corneum of mammalian skin. Nature. 1969 May 31;222(5196):881–882. doi: 10.1038/222881a0. [DOI] [PubMed] [Google Scholar]
  9. Masters B. R., So P. T., Gratton E. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys J. 1997 Jun;72(6):2405–2412. doi: 10.1016/S0006-3495(97)78886-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ohman H., Vahlquist A. In vivo studies concerning a pH gradient in human stratum corneum and upper epidermis. Acta Derm Venereol. 1994 Sep;74(5):375–379. doi: 10.2340/0001555574375379. [DOI] [PubMed] [Google Scholar]
  11. Ohman H., Vahlquist A. The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis: a clue to the molecular origin of the "acid skin mantle"? J Invest Dermatol. 1998 Oct;111(4):674–677. doi: 10.1046/j.1523-1747.1998.00356.x. [DOI] [PubMed] [Google Scholar]
  12. Patterson M. J., Galloway S. D., Nimmo M. A. Variations in regional sweat composition in normal human males. Exp Physiol. 2000 Nov;85(6):869–875. doi: 10.1111/j.1469-445x.2000.02058.x. [DOI] [PubMed] [Google Scholar]
  13. Rink T. J., Tsien R. Y., Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Szmacinski H., Lakowicz J. R. Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry. Anal Chem. 1993 Jul 1;65(13):1668–1674. doi: 10.1021/ac00061a007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Turner N. G., Cullander C., Guy R. H. Determination of the pH gradient across the stratum corneum. J Investig Dermatol Symp Proc. 1998 Aug;3(2):110–113. doi: 10.1038/jidsymp.1998.23. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES