Abstract
Betabellin is a 32-residue peptide engineered to fold into a four-stranded antiparallel beta-sheet protein. Upon air oxidation, the betabellin peptides can fold and assemble into a disulfide-bridged homodimer, or beta-sandwich, of 64 residues. Recent biophysical and ultrastructural studies indicate that betabellin 15D (B15D) (a homodimer of HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, where p = DPro, k = DLys, and h = DHis) forms unbranched, 35-A wide assemblies that resemble the protofilaments of amyloid fibers. In the present study, we have analyzed in detail the X-ray diffraction patterns of B15D prepared from acetonitrile. The fiber diffraction analysis indicated that the B15D fibril was composed of a double helix defined by the selection rule l = n + 7m (where l is even, and n and m are any integers), and having a 199-A period and pitch, 28-A rise per unit, and 10-A radius. This helical model is equivalent to a reverse-handed, single helix with half the period and defined by the selection rule l = -3n + 7m (where l is any integer). The asymmetric unit is the single B15D beta-sandwich molecule. These results suggest that the betabellin assembly that models the protofilaments of amyloid fibers is made up of discrete subunits on a helical array. Multiple intersheet hydrogen bonds in the axial direction and intersandwich polar interactions in the lateral direction stabilize the array.
Full Text
The Full Text of this article is available as a PDF (371.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blake C., Serpell L. Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix. Structure. 1996 Aug 15;4(8):989–998. doi: 10.1016/s0969-2126(96)00104-9. [DOI] [PubMed] [Google Scholar]
- Censullo R., Cheung H. C. A rotational offset model for two-stranded F-actin. J Struct Biol. 1993 Jan-Feb;110(1):75–83. doi: 10.1006/jsbi.1993.1006. [DOI] [PubMed] [Google Scholar]
- Fraser P. E., Duffy L. K., O'Malley M. B., Nguyen J., Inouye H., Kirschner D. A. Morphology and antibody recognition of synthetic beta-amyloid peptides. J Neurosci Res. 1991 Apr;28(4):474–485. doi: 10.1002/jnr.490280404. [DOI] [PubMed] [Google Scholar]
- Fraser P. E., Nguyen J. T., Inouye H., Surewicz W. K., Selkoe D. J., Podlisny M. B., Kirschner D. A. Fibril formation by primate, rodent, and Dutch-hemorrhagic analogues of Alzheimer amyloid beta-protein. Biochemistry. 1992 Nov 10;31(44):10716–10723. doi: 10.1021/bi00159a011. [DOI] [PubMed] [Google Scholar]
- Frishman D., Argos P. Knowledge-based protein secondary structure assignment. Proteins. 1995 Dec;23(4):566–579. doi: 10.1002/prot.340230412. [DOI] [PubMed] [Google Scholar]
- Geddes A. J., Parker K. D., Atkins E. D., Beighton E. "Cross-beta" conformation in proteins. J Mol Biol. 1968 Mar 14;32(2):343–358. doi: 10.1016/0022-2836(68)90014-4. [DOI] [PubMed] [Google Scholar]
- Guex N., Diemand A., Peitsch M. C. Protein modelling for all. Trends Biochem Sci. 1999 Sep;24(9):364–367. doi: 10.1016/s0968-0004(99)01427-9. [DOI] [PubMed] [Google Scholar]
- Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
- Inouye H., Bond J., Baldwin M. A., Ball H. L., Prusiner S. B., Kirschner D. A. Structural changes in a hydrophobic domain of the prion protein induced by hydration and by ala-->Val and pro-->Leu substitutions. J Mol Biol. 2000 Jul 28;300(5):1283–1296. doi: 10.1006/jmbi.2000.3926. [DOI] [PubMed] [Google Scholar]
- Inouye H., Domingues F. S., Damas A. M., Saraiva M. J., Lundgren E., Sandgren O., Kirschner D. A. Analysis of x-ray diffraction patterns from amyloid of biopsied vitreous humor and kidney of transthyretin (TTR) Met30 familial amyloidotic polyneuropathy (FAP) patients: axially arrayed TTR monomers constitute the protofilament. Amyloid. 1998 Sep;5(3):163–174. doi: 10.3109/13506129809003842. [DOI] [PubMed] [Google Scholar]
- Inouye H., Fraser P. E., Kirschner D. A. Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by x-ray diffraction. Biophys J. 1993 Feb;64(2):502–519. doi: 10.1016/S0006-3495(93)81393-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inouye H., Karthigasan J., Kirschner D. A. Membrane structure in isolated and intact myelins. Biophys J. 1989 Jul;56(1):129–137. doi: 10.1016/S0006-3495(89)82658-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inouye H., Kirschner D. A. Folding and function of the myelin proteins from primary sequence data. J Neurosci Res. 1991 Jan;28(1):1–17. doi: 10.1002/jnr.490280102. [DOI] [PubMed] [Google Scholar]
- Inouye H., Kirschner D. A. Polypeptide chain folding in the hydrophobic core of hamster scrapie prion: analysis by X-ray diffraction. J Struct Biol. 1998;122(1-2):247–255. doi: 10.1006/jsbi.1998.3998. [DOI] [PubMed] [Google Scholar]
- Inouye H., Kirschner D. A. X-ray diffraction analysis of scrapie prion: intermediate and folded structures in a peptide containing two putative alpha-helices. J Mol Biol. 1997 May 2;268(2):375–389. doi: 10.1006/jmbi.1997.0949. [DOI] [PubMed] [Google Scholar]
- Inouye H. X-ray scattering from a discrete helix with cumulative angular and translational disorders. Acta Crystallogr A. 1994 Sep 1;50(Pt 5):644–646. doi: 10.1107/s0108767394003429. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Lim A., Makhov A. M., Bond J., Inouye H., Connors L. H., Griffith J. D., Erickson B. W., Kirschner D. A., Costello C. E. Betabellins 15D and 16D, de Novo designed beta-sandwich proteins that have amyloidogenic properties. J Struct Biol. 2000 Jun;130(2-3):363–370. doi: 10.1006/jsbi.2000.4272. [DOI] [PubMed] [Google Scholar]
- Lim A., Saderholm M. J., Makhov A. M., Kroll M., Yan Y., Perera L., Griffith J. D., Erickson B. W. Engineering of betabellin-15D: a 64 residue beta sheet protein that forms long narrow multimeric fibrils. Protein Sci. 1998 Jul;7(7):1545–1554. doi: 10.1002/pro.5560070708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lotz B., Colonna-Cesari F., Heitz F., Spach G. A family of double helices of alternating poly(gamma-benzyl-D-L-glutamate), a stereochemical model for gramicidin A. J Mol Biol. 1976 Oct 5;106(4):915–942. doi: 10.1016/0022-2836(76)90343-0. [DOI] [PubMed] [Google Scholar]
- Malinchik S. B., Inouye H., Szumowski K. E., Kirschner D. A. Structural analysis of Alzheimer's beta(1-40) amyloid: protofilament assembly of tubular fibrils. Biophys J. 1998 Jan;74(1):537–545. doi: 10.1016/S0006-3495(98)77812-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- Murthy V. L., Rose G. D. Is counterion delocalization responsible for collapse in RNA folding? Biochemistry. 2000 Nov 28;39(47):14365–14370. doi: 10.1021/bi001820r. [DOI] [PubMed] [Google Scholar]
- Nguyen J. T., Inouye H., Baldwin M. A., Fletterick R. J., Cohen F. E., Prusiner S. B., Kirschner D. A. X-ray diffraction of scrapie prion rods and PrP peptides. J Mol Biol. 1995 Sep 29;252(4):412–422. doi: 10.1006/jmbi.1995.0507. [DOI] [PubMed] [Google Scholar]
- PAULING L., COREY R. B. Compound helical configurations of polypeptide chains: structure of proteins of the alpha-keratin type. Nature. 1953 Jan 10;171(4341):59–61. doi: 10.1038/171059a0. [DOI] [PubMed] [Google Scholar]
- Richardson J. S., Richardson D. C. The de novo design of protein structures. Trends Biochem Sci. 1989 Jul;14(7):304–309. doi: 10.1016/0968-0004(89)90070-4. [DOI] [PubMed] [Google Scholar]
- Shirahama T., Cohen A. S. High-resolution electron microscopic analysis of the amyloid fibril. J Cell Biol. 1967 Jun;33(3):679–708. doi: 10.1083/jcb.33.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sunde M., Serpell L. C., Bartlam M., Fraser P. E., Pepys M. B., Blake C. C. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol. 1997 Oct 31;273(3):729–739. doi: 10.1006/jmbi.1997.1348. [DOI] [PubMed] [Google Scholar]
- Yan Y., Tropsha A., Hermans J., Erickson B. W. Free energies for refolding of the common beta turn into the inverse-common beta turn: simulation of the role of D/L chirality. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7898–7902. doi: 10.1073/pnas.90.16.7898. [DOI] [PMC free article] [PubMed] [Google Scholar]