Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Oct;83(4):1774–1783. doi: 10.1016/S0006-3495(02)73943-X

A procedure for refining a coiled coil protein structure using x-ray fiber diffraction and modeling.

Fatma Briki 1, Jean Doucet 1, Catherine Etchebest 1
PMCID: PMC1302271  PMID: 12324400

Abstract

We describe a combined use of experimental and simulation techniques to configure side chains in a coiled coil structure. As already demonstrated in a previous work, x-ray diffraction patterns from hard alpha-keratin fibers in the 5.15 A meridian zone reflect the global configuration of the chi(1) dihedral angle of the coiled coil side chains. Molecular simulations, such as energy minimization and molecular dynamics, and rotameric representation in the PDB, are used here on a heterodimeric coiled coil to investigate the dihedral angle distribution along the sequence. Different procedures have been used to build the structure, the quality assessment was based on the agreement between the simulated diffraction patterns and the experimental ones in the fingerprint region of coiled coils (5.15 A). The best one for building a realistic coiled coil structure consists of placing the side chains using molecular dynamics (MD) simulations, followed by side chain positioning using SMD or SCWRL procedures. The side chains and the backbone are equilibrated during the MD until they reach an equilibrium state for the t/g(+) ratio. Positioning the side chains on the resulting backbone, using the above procedures, gives rise to a well-defined 5.15 A meridian reflection.

Full Text

The Full Text of this article is available as a PDF (541.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bower M. J., Cohen F. E., Dunbrack R. L., Jr Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. J Mol Biol. 1997 Apr 18;267(5):1268–1282. doi: 10.1006/jmbi.1997.0926. [DOI] [PubMed] [Google Scholar]
  2. Burkhard P., Kammerer R. A., Steinmetz M. O., Bourenkov G. P., Aebi U. The coiled-coil trigger site of the rod domain of cortexillin I unveils a distinct network of interhelical and intrahelical salt bridges. Structure. 2000 Mar 15;8(3):223–230. doi: 10.1016/s0969-2126(00)00100-3. [DOI] [PubMed] [Google Scholar]
  3. Busson B., Briki F., Doucet J. Side-chains configurations in coiled coils revealed by the 5.15-A meridional reflection on hard alpha-keratin X-ray diffraction patterns. J Struct Biol. 1999 Mar;125(1):1–10. doi: 10.1006/jsbi.1999.4082. [DOI] [PubMed] [Google Scholar]
  4. Busson B., Doucet J. Modeling alpha-helical coiled coils: analytic relations between parameters. J Struct Biol. 1999 Aug;127(1):16–21. doi: 10.1006/jsbi.1999.4125. [DOI] [PubMed] [Google Scholar]
  5. Coulombe P. A., Fuchs E. Elucidating the early stages of keratin filament assembly. J Cell Biol. 1990 Jul;111(1):153–169. doi: 10.1083/jcb.111.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dowling L. M., Crewther W. G., Inglis A. S. The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments. Biochem J. 1986 Jun 15;236(3):695–703. doi: 10.1042/bj2360695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dunbrack R. L., Jr, Cohen F. E. Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci. 1997 Aug;6(8):1661–1681. doi: 10.1002/pro.5560060807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glover J. N., Harrison S. C. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature. 1995 Jan 19;373(6511):257–261. doi: 10.1038/373257a0. [DOI] [PubMed] [Google Scholar]
  9. Harbury P. B., Tidor B., Kim P. S. Repacking protein cores with backbone freedom: structure prediction for coiled coils. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8408–8412. doi: 10.1073/pnas.92.18.8408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herrling J., Sparrow L. G. Interactions of intermediate filament proteins from wool. Int J Biol Macromol. 1991 Apr;13(2):115–119. doi: 10.1016/0141-8130(91)90059-4. [DOI] [PubMed] [Google Scholar]
  11. Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
  12. Koehl P., Delarue M. Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy. J Mol Biol. 1994 Jun 3;239(2):249–275. doi: 10.1006/jmbi.1994.1366. [DOI] [PubMed] [Google Scholar]
  13. Kreplak L., Doucet J., Briki F. Unraveling double stranded alpha-helical coiled coils: an x-ray diffraction study on hard alpha-keratin fibers. Biopolymers. 2001 Apr 15;58(5):526–533. doi: 10.1002/1097-0282(20010415)58:5<526::AID-BIP1028>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  14. Lavery R., Parker I., Kendrick J. A general approach to the optimization of the conformation of ring molecules with an application to valinomycin. J Biomol Struct Dyn. 1986 Dec;4(3):443–462. doi: 10.1080/07391102.1986.10506361. [DOI] [PubMed] [Google Scholar]
  15. MacKenzie K. R., Prestegard J. H., Engelman D. M. A transmembrane helix dimer: structure and implications. Science. 1997 Apr 4;276(5309):131–133. doi: 10.1126/science.276.5309.131. [DOI] [PubMed] [Google Scholar]
  16. MacKenzie K. R., Prestegard J. H., Engelman D. M. Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon-carbon couplings and 13C chemical shifts. J Biomol NMR. 1996 May;7(3):256–260. doi: 10.1007/BF00202043. [DOI] [PubMed] [Google Scholar]
  17. O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
  18. Parry D. A., Steven A. C., Steinert P. M. The coiled-coil molecules of intermediate filaments consist of two parallel chains in exact axial register. Biochem Biophys Res Commun. 1985 Mar 29;127(3):1012–1018. doi: 10.1016/s0006-291x(85)80045-0. [DOI] [PubMed] [Google Scholar]
  19. Seo J., Cohen C. Pitch diversity in alpha-helical coiled coils. Proteins. 1993 Mar;15(3):223–234. doi: 10.1002/prot.340150302. [DOI] [PubMed] [Google Scholar]
  20. Sparrow L. G., Robinson C. P., McMahon D. T., Rubira M. R. The amino acid sequence of component 7c, a type II intermediate-filament protein from wool. Biochem J. 1989 Aug 1;261(3):1015–1022. doi: 10.1042/bj2611015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tufféry P., Etchebest C., Hazout S. Prediction of protein side chain conformations: a study on the influence of backbone accuracy on conformation stability in the rotamer space. Protein Eng. 1997 Apr;10(4):361–372. doi: 10.1093/protein/10.4.361. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES