Abstract
We show that the rate at which electrons pass through the respiratory chain in mitochondria and respiring prokaryotic cells is described by the product of three terms, one describing electron donation, one acceptance, and a third, the thermodynamic drive. We apply the theory of nonequilibrium thermodynamics in the context of the chemiosmotic model of proton translocation and energy conservation. This approach leads to a closed-form expression that predicts steady-state electron flux as a function of chemical conditions and the proton motive force across the mitochondrial inner membrane or prokaryotic cytoplasmic membrane. The rate expression, derived considering reverse and forward electron flow, is the first to account for both thermodynamic and kinetic controls on the respiration rate. The expression can be simplified under specific conditions to give rate laws of various forms familiar in cellular physiology and microbial ecology. The expression explains the nonlinear dependence of flux on electrical potential gradient, its hyperbolic dependence on substrate concentration, and the inhibiting effects of reaction products. It provides a theoretical basis for investigating life under unusual conditions, such as microbial respiration in alkaline waters.
Full Text
The Full Text of this article is available as a PDF (161.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bohnensack R. Control of energy transformation of mitochondria. Analysis by a quantitative model. Biochim Biophys Acta. 1981 Jan 14;634(1):203–218. doi: 10.1016/0005-2728(81)90139-0. [DOI] [PubMed] [Google Scholar]
- Boork J., Wennerström H. The influence of membrane potentials on reaction rates. Control in free-energy-transducing systems. Biochim Biophys Acta. 1984 Nov 26;767(2):314–320. doi: 10.1016/0005-2728(84)90201-9. [DOI] [PubMed] [Google Scholar]
- Brown G. C. Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J. 1992 May 15;284(Pt 1):1–13. doi: 10.1042/bj2840001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown G. C., Lakin-Thomas P. L., Brand M. D. Control of respiration and oxidative phosphorylation in isolated rat liver cells. Eur J Biochem. 1990 Sep 11;192(2):355–362. doi: 10.1111/j.1432-1033.1990.tb19234.x. [DOI] [PubMed] [Google Scholar]
- Cristina E., Hernández J. A. An elementary kinetic model of energy coupling in biological membranes. Biochim Biophys Acta. 2000 Nov 20;1460(2-3):276–290. doi: 10.1016/s0005-2728(00)00153-5. [DOI] [PubMed] [Google Scholar]
- Davidson V. L. Unraveling the kinetic complexity of interprotein electron transfer reactions. Biochemistry. 1996 Nov 12;35(45):14035–14039. doi: 10.1021/bi961577p. [DOI] [PubMed] [Google Scholar]
- Fell D. A. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J. 1992 Sep 1;286(Pt 2):313–330. doi: 10.1042/bj2860313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gnaiger E., Lassnig B., Kuznetsov A. V., Margreiter R. Mitochondrial respiration in the low oxygen environment of the cell. Effect of ADP on oxygen kinetics. Biochim Biophys Acta. 1998 Jun 10;1365(1-2):249–254. doi: 10.1016/s0005-2728(98)00076-0. [DOI] [PubMed] [Google Scholar]
- Gnaiger E., Méndez G., Hand S. C. High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11080–11085. doi: 10.1073/pnas.97.20.11080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gnaiger E., Steinlechner-Maran R., Méndez G., Eberl T., Margreiter R. Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr. 1995 Dec;27(6):583–596. doi: 10.1007/BF02111656. [DOI] [PubMed] [Google Scholar]
- Groen A. K., Wanders R. J., Westerhoff H. V., van der Meer R., Tager J. M. Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem. 1982 Mar 25;257(6):2754–2757. [PubMed] [Google Scholar]
- Holzhütter H. G., Henke W., Dubiel W., Gerber G. A mathematical model to study short-term regulation of mitochondrial energy transduction. Biochim Biophys Acta. 1985 Nov 27;810(2):252–268. doi: 10.1016/0005-2728(85)90140-9. [DOI] [PubMed] [Google Scholar]
- Kacser H., Burns J. A. MOlecular democracy: who shares the controls? Biochem Soc Trans. 1979 Oct;7(5):1149–1160. doi: 10.1042/bst0071149. [DOI] [PubMed] [Google Scholar]
- Korzeniewski B., Froncisz W. An extended dynamic model of oxidative phosphorylation. Biochim Biophys Acta. 1991 Oct 18;1060(2):210–223. doi: 10.1016/s0005-2728(09)91009-x. [DOI] [PubMed] [Google Scholar]
- Korzeniewski B., Mazat J. P. Theoretical studies on the control of oxidative phosphorylation in muscle mitochondria: application to mitochondrial deficiencies. Biochem J. 1996 Oct 1;319(Pt 1):143–148. doi: 10.1042/bj3190143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krulwich T. A., Guffanti A. A. Regulation of internal pH in acidophilic and alkalophilic bacteria. Methods Enzymol. 1986;125:352–365. doi: 10.1016/s0076-6879(86)25030-2. [DOI] [PubMed] [Google Scholar]
- Lionetti L., Iossa S., Brand M. D., Liverini G. Relationship between membrane potential and respiration rate in isolated liver mitochondria from rats fed an energy dense diet. Mol Cell Biochem. 1996 May 24;158(2):133–138. doi: 10.1007/BF00225839. [DOI] [PubMed] [Google Scholar]
- MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
- Moreno-Sánchez R., Bravo C., Westerhoff H. V. Determining and understanding the control of flux. An illustration in submitochondrial particles of how to validate schemes of metabolic control. Eur J Biochem. 1999 Sep;264(2):427–433. doi: 10.1046/j.1432-1327.1999.00621.x. [DOI] [PubMed] [Google Scholar]
- Murphy M. P., Brand M. D. The control of electron flux through cytochrome oxidase. Biochem J. 1987 Apr 15;243(2):499–505. doi: 10.1042/bj2430499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholls D. G., Bernson V. S. Inter-relationships between proton electrochemical gradient, adenine-nucleotide phosphorylation potential and respiration, during substrate-level and oxidative phosphorylation by mitochondria from brown adipose tissue of cold-adapted guinea-pigs. Eur J Biochem. 1977 May 16;75(2):601–612. doi: 10.1111/j.1432-1033.1977.tb11560.x. [DOI] [PubMed] [Google Scholar]
- Richardson D. J. Bacterial respiration: a flexible process for a changing environment. Microbiology. 2000 Mar;146(Pt 3):551–571. doi: 10.1099/00221287-146-3-551. [DOI] [PubMed] [Google Scholar]
- Rohde K., Reich J. G. Theoretical study of an energy metabolizing system satisfying Mitchell's postulates. Acta Biol Med Ger. 1980;39(4):367–380. [PubMed] [Google Scholar]
- Rottenberg H., Gutman M. Control of the rate of reverse electron transport in submitochondrial particles by the free energy. Biochemistry. 1977 Jul 12;16(14):3220–3227. doi: 10.1021/bi00633a028. [DOI] [PubMed] [Google Scholar]
- Rottenberg H. Non-equilibrium thermodynamics of energy conversion in bioenergetics. Biochim Biophys Acta. 1979 Dec 13;549(3-4):225–253. doi: 10.1016/0304-4173(79)90001-6. [DOI] [PubMed] [Google Scholar]
- Rottenberg H. The thermodynamic description of enzyme-catalyzed reactions. The linear relation between the reaction rate and the affinity. Biophys J. 1973 Jun;13(6):503–511. doi: 10.1016/S0006-3495(73)86004-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teusink B., Westerhoff H. V. 'Slave' metabolites and enzymes. A rapid way of delineating metabolic control. Eur J Biochem. 2000 Apr;267(7):1889–1893. doi: 10.1046/j.1432-1327.2000.01220.x. [DOI] [PubMed] [Google Scholar]
- Wilson D. F., Owen C. S., Erecińska M. Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration: a mathematical model. Arch Biochem Biophys. 1979 Jul;195(2):494–504. doi: 10.1016/0003-9861(79)90376-x. [DOI] [PubMed] [Google Scholar]
- Wilson D. F., Owen C. S., Holian A. Control of mitochondrial respiration: a quantitative evaluation of the roles of cytochrome c and oxygen. Arch Biochem Biophys. 1977 Aug;182(2):749–762. doi: 10.1016/0003-9861(77)90557-4. [DOI] [PubMed] [Google Scholar]
- Zharova T. V., Vinogradov A. D. A competitive inhibition of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) by ADP-ribose. Biochim Biophys Acta. 1997 Jul 4;1320(3):256–264. doi: 10.1016/s0005-2728(97)00029-7. [DOI] [PubMed] [Google Scholar]
