Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Oct;83(4):1877–1890. doi: 10.1016/S0006-3495(02)73952-0

A theoretical model of slow wave regulation using voltage-dependent synthesis of inositol 1,4,5-trisphosphate.

Mohammad S Imtiaz 1, David W Smith 1, Dirk F van Helden 1
PMCID: PMC1302280  PMID: 12324409

Abstract

A qualitative mathematical model is presented that examines membrane potential feedback on synthesis of inositol 1,4,5-trisphosphate (IP(3)), and its role in generation and modulation of slow waves. Previous experimental studies indicate that slow waves show voltage dependence, and this is likely to result through membrane potential modulation of IP(3). It is proposed that the observed response of the tissue to current pulse, pulse train, and maintained current injection can be explained by changes in IP(3), modulated through a voltage-IP(3) feedback loop. Differences underlying the tissue responses to current injections of opposite polarities are shown to be due to the sequence of events following such currents. Results from this model are consistent with experimental findings and provide further understanding of these experimental observations. Specifically, we find that membrane potential can induce, abolish, and modulate slow wave frequency by altering the excitability of the tissue through the voltage-IP(3) feedback loop.

Full Text

The Full Text of this article is available as a PDF (799.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aliev R. R., Richards W., Wikswo J. P. A simple nonlinear model of electrical activity in the intestine. J Theor Biol. 2000 May 7;204(1):21–28. doi: 10.1006/jtbi.2000.1069. [DOI] [PubMed] [Google Scholar]
  2. Atri A., Amundson J., Clapham D., Sneyd J. A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys J. 1993 Oct;65(4):1727–1739. doi: 10.1016/S0006-3495(93)81191-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J. Cell signalling. A tale of two messengers. Nature. 1993 Sep 30;365(6445):388–389. doi: 10.1038/365388a0. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  5. Best L., Bolton T. B. Depolarisation of guinea-pig visceral smooth muscle causes hydrolysis of inositol phospholipids. Naunyn Schmiedebergs Arch Pharmacol. 1986 May;333(1):78–82. doi: 10.1007/BF00569664. [DOI] [PubMed] [Google Scholar]
  6. Bird G. S., Obie J. F., Putney J. W., Jr Effect of cytoplasmic Ca2+ on (1,4,5)IP3 formation in vasopressin-activated hepatocytes. Cell Calcium. 1997 Mar;21(3):253–256. doi: 10.1016/s0143-4160(97)90049-x. [DOI] [PubMed] [Google Scholar]
  7. Bolton T. B. On the nature of the oscillations of the membrane potential (slow waves) produced by acetylcholine or carbachol in intestinal smooth muscle. J Physiol. 1971 Jul;216(2):403–418. doi: 10.1113/jphysiol.1971.sp009532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daniel E. E., Bardakjian B. L., Huizinga J. D., Diamant N. E. Relaxation oscillator and core conductor models are needed for understanding of GI electrical activities. Am J Physiol. 1994 Mar;266(3 Pt 1):G339–G349. doi: 10.1152/ajpgi.1994.266.3.G339. [DOI] [PubMed] [Google Scholar]
  9. De Young G. W., Keizer J. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9895–9899. doi: 10.1073/pnas.89.20.9895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Donaldson S. K., Goldberg N. D., Walseth T. F., Huetteman D. A. Voltage dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in peeled skeletal muscle fibers. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5749–5753. doi: 10.1073/pnas.85.15.5749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dupont G., Berridge M. J., Goldbeter A. Latency correlates with period in a model for signal-induced Ca2+ oscillations based on Ca2(+)-induced Ca2+ release. Cell Regul. 1990 Oct;1(11):853–861. doi: 10.1091/mbc.1.11.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dupont G., Erneux C. Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca2+ oscillations. Cell Calcium. 1997 Nov;22(5):321–331. doi: 10.1016/s0143-4160(97)90017-8. [DOI] [PubMed] [Google Scholar]
  13. Dupont G., Goldbeter A. One-pool model for Ca2+ oscillations involving Ca2+ and inositol 1,4,5-trisphosphate as co-agonists for Ca2+ release. Cell Calcium. 1993 Apr;14(4):311–322. doi: 10.1016/0143-4160(93)90052-8. [DOI] [PubMed] [Google Scholar]
  14. Edwards F. R., Hirst G. D., Suzuki H. Unitary nature of regenerative potentials recorded from circular smooth muscle of guinea-pig antrum. J Physiol. 1999 Aug 15;519(Pt 1):235–250. doi: 10.1111/j.1469-7793.1999.0235o.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fitzhugh R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J. 1961 Jul;1(6):445–466. doi: 10.1016/s0006-3495(61)86902-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ganitkevich VYa, Isenberg G. Membrane potential modulates inositol 1,4,5-trisphosphate-mediated Ca2+ transients in guinea-pig coronary myocytes. J Physiol. 1993 Oct;470:35–44. doi: 10.1113/jphysiol.1993.sp019845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ganitkevich V. Y., Isenberg G. Effect of membrane potential on the initiation of acetylcholine-induced Ca2+ transients in isolated guinea pig coronary myocytes. Circ Res. 1996 Apr;78(4):717–723. doi: 10.1161/01.res.78.4.717. [DOI] [PubMed] [Google Scholar]
  18. Harootunian A. T., Kao J. P., Paranjape S., Adams S. R., Potter B. V., Tsien R. Y. Cytosolic Ca2+ oscillations in REF52 fibroblasts: Ca(2+)-stimulated IP3 production or voltage-dependent Ca2+ channels as key positive feedback elements. Cell Calcium. 1991 Feb-Mar;12(2-3):153–164. doi: 10.1016/0143-4160(91)90017-9. [DOI] [PubMed] [Google Scholar]
  19. Harootunian A. T., Kao J. P., Paranjape S., Tsien R. Y. Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3. Science. 1991 Jan 4;251(4989):75–78. doi: 10.1126/science.1986413. [DOI] [PubMed] [Google Scholar]
  20. Hashitani H., Van Helden D. F., Suzuki H. Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra. Br J Pharmacol. 1996 Aug;118(7):1627–1632. doi: 10.1111/j.1476-5381.1996.tb15584.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hirose K., Kadowaki S., Tanabe M., Takeshima H., Iino M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science. 1999 May 28;284(5419):1527–1530. doi: 10.1126/science.284.5419.1527. [DOI] [PubMed] [Google Scholar]
  22. Houart G., Dupont G., Goldbeter A. Bursting, chaos and birhythmicity originating from self-modulation of the inositol 1,4,5-trisphosphate signal in a model for intracellular Ca2+ oscillations. Bull Math Biol. 1999 May;61(3):507–530. doi: 10.1006/bulm.1999.0095. [DOI] [PubMed] [Google Scholar]
  23. Huang S., Nakayama S., Iino S., Tomita T. Voltage sensitivity of slow wave frequency in isolated circular muscle strips from guinea pig gastric antrum. Am J Physiol. 1999 Feb;276(2 Pt 1):G518–G528. doi: 10.1152/ajpgi.1999.276.2.G518. [DOI] [PubMed] [Google Scholar]
  24. Höfer T. Model of intercellular calcium oscillations in hepatocytes: synchronization of heterogeneous cells. Biophys J. 1999 Sep;77(3):1244–1256. doi: 10.1016/S0006-3495(99)76976-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Itoh T., Seki N., Suzuki S., Ito S., Kajikuri J., Kuriyama H. Membrane hyperpolarization inhibits agonist-induced synthesis of inositol 1,4,5-trisphosphate in rabbit mesenteric artery. J Physiol. 1992;451:307–328. doi: 10.1113/jphysiol.1992.sp019166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Keizer J., De Young G. Effect of voltage-gated plasma membrane Ca2+ fluxes on IP3-linked Ca2+ oscillations. Cell Calcium. 1993 May;14(5):397–410. doi: 10.1016/0143-4160(93)90044-7. [DOI] [PubMed] [Google Scholar]
  27. Liu L. W., Thuneberg L., Huizinga J. D. Cyclopiazonic acid, inhibiting the endoplasmic reticulum calcium pump, reduces the canine colonic pacemaker frequency. J Pharmacol Exp Ther. 1995 Nov;275(2):1058–1068. [PubMed] [Google Scholar]
  28. Mahaut-Smith M. P., Hussain J. F., Mason M. J. Depolarization-evoked Ca2+ release in a non-excitable cell, the rat megakaryocyte. J Physiol. 1999 Mar 1;515(Pt 2):385–390. doi: 10.1111/j.1469-7793.1999.385ac.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mason M. J., Hussain J. F., Mahaut-Smith M. P. A novel role for membrane potential in the modulation of intracellular Ca2+ oscillations in rat megakaryocytes. J Physiol. 2000 Apr 15;524(Pt 2):437–446. doi: 10.1111/j.1469-7793.2000.00437.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mason M. J., Mahaut-Smith M. P. Voltage-dependent Ca2+ release in rat megakaryocytes requires functional IP3 receptors. J Physiol. 2001 May 15;533(Pt 1):175–183. doi: 10.1111/j.1469-7793.2001.0175b.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Meyer T., Stryer L. Calcium spiking. Annu Rev Biophys Biophys Chem. 1991;20:153–174. doi: 10.1146/annurev.bb.20.060191.001101. [DOI] [PubMed] [Google Scholar]
  32. Nelsen T. S., Becker J. C. Simulation of the electrical and mechanical gradient of the small intestine. Am J Physiol. 1968 Apr;214(4):749–757. doi: 10.1152/ajplegacy.1968.214.4.749. [DOI] [PubMed] [Google Scholar]
  33. Nose K., Suzuki H., Kannan H. Voltage dependency of the frequency of slow waves in antrum smooth muscle of the guinea-pig stomach. Jpn J Physiol. 2000 Dec;50(6):625–633. doi: 10.2170/jjphysiol.50.625. [DOI] [PubMed] [Google Scholar]
  34. Publicover N. G., Sanders K. M. Are relaxation oscillators an appropriate model of gastrointestinal electrical activity? Am J Physiol. 1989 Feb;256(2 Pt 1):G265–G274. doi: 10.1152/ajpgi.1989.256.2.G265. [DOI] [PubMed] [Google Scholar]
  35. Sanders K. M. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology. 1996 Aug;111(2):492–515. doi: 10.1053/gast.1996.v111.pm8690216. [DOI] [PubMed] [Google Scholar]
  36. Sarna S. K., Daniel E. E., Kingma Y. J. Simulation of slow-wave electrical activity of small intestine. Am J Physiol. 1971 Jul;221(1):166–175. doi: 10.1152/ajplegacy.1971.221.1.166. [DOI] [PubMed] [Google Scholar]
  37. Sarna S. K., Daniel E. E., Kingma Y. J. Simulation of the electric-control activity of the stomach by an array of relaxation oscillators. Am J Dig Dis. 1972 Apr;17(4):299–310. doi: 10.1007/BF02231729. [DOI] [PubMed] [Google Scholar]
  38. Sneyd J., Girard S., Clapham D. Calcium wave propagation by calcium-induced calcium release: an unusual excitable system. Bull Math Biol. 1993 Mar;55(2):315–344. doi: 10.1007/BF02460886. [DOI] [PubMed] [Google Scholar]
  39. Suzuki H., Hirst G. D. Regenerative potentials evoked in circular smooth muscle of the antral region of guinea-pig stomach. J Physiol. 1999 Jun 1;517(Pt 2):563–573. doi: 10.1111/j.1469-7793.1999.0563t.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Takazawa K., Lemos M., Delvaux A., Lejeune C., Dumont J. E., Erneux C. Rat brain inositol 1,4,5-trisphosphate 3-kinase. Ca2(+)-sensitivity, purification and antibody production. Biochem J. 1990 May 15;268(1):213–217. doi: 10.1042/bj2680213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vergara J., Tsien R. Y., Delay M. Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6352–6356. doi: 10.1073/pnas.82.18.6352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yamagishi T., Yanagisawa T., Taira N. K+ channel openers, cromakalim and Ki4032, inhibit agonist-induced Ca2+ release in canine coronary artery. Naunyn Schmiedebergs Arch Pharmacol. 1992 Dec;346(6):691–700. doi: 10.1007/BF00168744. [DOI] [PubMed] [Google Scholar]
  43. van Helden D. F., Imtiaz M. S., Nurgaliyeva K., von der Weid P., Dosen P. J. Role of calcium stores and membrane voltage in the generation of slow wave action potentials in guinea-pig gastric pylorus. J Physiol. 2000 Apr 1;524(Pt 1):245–265. doi: 10.1111/j.1469-7793.2000.00245.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES