Abstract
A mathematical model was developed to quantify the efficiency of cell-substrate attachment in the parallel-plate flow chamber. The model decouples the physical features of the system that affect cell-substrate collision rates from the biological features that influence cellular adhesivity. Thus, experimental data on cell rolling and adhesion density are converted into "frequency" parameters that quantify the "efficiency" with which cells in the flow chamber progress from the free stream to rolling, and transition from rolling to firm arrest. The model was partially validated by comparing simulation results with experiments where neutrophils rolled and adhered onto substrates composed of cotransfected cells bearing E-selectin and intercellular adhesion molecule-1 (ICAM-1). Results suggest that: 1) Neutrophils contact the E-selectin substrate on average for 4-8.5s before tethering. This contact duration is insensitive to applied shear stress. 2) At 2 dyn/cm(2), approximately 28% of the collisions between the cells and substrate result in primary capture. Also, approximately 5-7% of collisions between neutrophils in the free stream and previously recruited neutrophils bound on the substrate result in secondary capture. These percentages were higher at lower shears. 3) An adherent cell may influence the flow streams in its vicinity up to a distance of 2.5 cell diameters away. 4) Our estimates of selectin on-rate in cellular systems compare favorably with data from reconstituted systems with immobilized soluble E-selectin. In magnitude, the observed on-rates occur in the order, L-selectin > P-selectin > E-selectin.
Full Text
The Full Text of this article is available as a PDF (306.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbassi O., Kishimoto T. K., McIntire L. V., Anderson D. C., Smith C. W. E-selectin supports neutrophil rolling in vitro under conditions of flow. J Clin Invest. 1993 Dec;92(6):2719–2730. doi: 10.1172/JCI116889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alon R., Fuhlbrigge R. C., Finger E. B., Springer T. A. Interactions through L-selectin between leukocytes and adherent leukocytes nucleate rolling adhesions on selectins and VCAM-1 in shear flow. J Cell Biol. 1996 Nov;135(3):849–865. doi: 10.1083/jcb.135.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alon R., Hammer D. A., Springer T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 1995 Apr 6;374(6522):539–542. doi: 10.1038/374539a0. [DOI] [PubMed] [Google Scholar]
- Bell D. N., Spain S., Goldsmith H. L. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. I. Measurement of concentration and size of single platelets and aggregates. Biophys J. 1989 Nov;56(5):817–828. doi: 10.1016/S0006-3495(89)82728-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang K. C., Hammer D. A. The forward rate of binding of surface-tethered reactants: effect of relative motion between two surfaces. Biophys J. 1999 Mar;76(3):1280–1292. doi: 10.1016/S0006-3495(99)77291-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiVietro J. A., Smith M. J., Smith B. R., Petruzzelli L., Larson R. S., Lawrence M. B. Immobilized IL-8 triggers progressive activation of neutrophils rolling in vitro on P-selectin and intercellular adhesion molecule-1. J Immunol. 2001 Oct 1;167(7):4017–4025. doi: 10.4049/jimmunol.167.7.4017. [DOI] [PubMed] [Google Scholar]
- Diacovo T. G., Roth S. J., Buccola J. M., Bainton D. F., Springer T. A. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood. 1996 Jul 1;88(1):146–157. [PubMed] [Google Scholar]
- Eriksson E. E., Xie X., Werr J., Thoren P., Lindbom L. Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J Exp Med. 2001 Jul 16;194(2):205–218. doi: 10.1084/jem.194.2.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erlandsen S. L., Hasslen S. R., Nelson R. D. Detection and spatial distribution of the beta 2 integrin (Mac-1) and L-selectin (LECAM-1) adherence receptors on human neutrophils by high-resolution field emission SEM. J Histochem Cytochem. 1993 Mar;41(3):327–333. doi: 10.1177/41.3.7679125. [DOI] [PubMed] [Google Scholar]
- Evans E., Leung A., Hammer D., Simon S. Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force. Proc Natl Acad Sci U S A. 2001 Mar 13;98(7):3784–3789. doi: 10.1073/pnas.061324998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felding-Habermann B., Habermann R., Saldívar E., Ruggeri Z. M. Role of beta3 integrins in melanoma cell adhesion to activated platelets under flow. J Biol Chem. 1996 Mar 8;271(10):5892–5900. doi: 10.1074/jbc.271.10.5892. [DOI] [PubMed] [Google Scholar]
- Gopalan P. K., Smith C. W., Lu H., Berg E. L., McIntire L. V., Simon S. I. Neutrophil CD18-dependent arrest on intercellular adhesion molecule 1 (ICAM-1) in shear flow can be activated through L-selectin. J Immunol. 1997 Jan 1;158(1):367–375. [PubMed] [Google Scholar]
- Graves B. J., Crowther R. L., Chandran C., Rumberger J. M., Li S., Huang K. S., Presky D. H., Familletti P. C., Wolitzky B. A., Burns D. K. Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature. 1994 Feb 10;367(6463):532–538. doi: 10.1038/367532a0. [DOI] [PubMed] [Google Scholar]
- Guyer D. A., Moore K. L., Lynam E. B., Schammel C. M., Rogelj S., McEver R. P., Sklar L. A. P-selectin glycoprotein ligand-1 (PSGL-1) is a ligand for L-selectin in neutrophil aggregation. Blood. 1996 Oct 1;88(7):2415–2421. [PubMed] [Google Scholar]
- King M. R., Hammer D. A. Multiparticle adhesive dynamics: hydrodynamic recruitment of rolling leukocytes. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14919–14924. doi: 10.1073/pnas.261272498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrence M. B., McIntire L. V., Eskin S. G. Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood. 1987 Nov;70(5):1284–1290. [PubMed] [Google Scholar]
- Mitchell D. J., Li P., Reinhardt P. H., Kubes P. Importance of L-selectin-dependent leukocyte-leukocyte interactions in human whole blood. Blood. 2000 May 1;95(9):2954–2959. [PubMed] [Google Scholar]
- Mohamed N., Teeters M. A., Patti J. M., Hök M., Ross J. M. Inhibition of Staphylococcus aureus adherence to collagen under dynamic conditions. Infect Immun. 1999 Feb;67(2):589–594. doi: 10.1128/iai.67.2.589-594.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore K. L., Patel K. D., Bruehl R. E., Li F., Johnson D. A., Lichenstein H. S., Cummings R. D., Bainton D. F., McEver R. P. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol. 1995 Feb;128(4):661–671. doi: 10.1083/jcb.128.4.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munn L. L., Melder R. J., Jain R. K. Analysis of cell flux in the parallel plate flow chamber: implications for cell capture studies. Biophys J. 1994 Aug;67(2):889–895. doi: 10.1016/S0006-3495(94)80550-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myszka D. G., He X., Dembo M., Morton T. A., Goldstein B. Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data. Biophys J. 1998 Aug;75(2):583–594. doi: 10.1016/S0006-3495(98)77549-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neelamegham S., Munn L. L., Zygourakis K. A model for the kinetics of homotypic cellular aggregation under static conditions. Biophys J. 1997 Jan;72(1):51–64. doi: 10.1016/S0006-3495(97)78646-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neelamegham S., Taylor A. D., Burns A. R., Smith C. W., Simon S. I. Hydrodynamic shear shows distinct roles for LFA-1 and Mac-1 in neutrophil adhesion to intercellular adhesion molecule-1. Blood. 1998 Sep 1;92(5):1626–1638. [PubMed] [Google Scholar]
- Neelamegham S., Taylor A. D., Hellums J. D., Dembo M., Smith C. W., Simon S. I. Modeling the reversible kinetics of neutrophil aggregation under hydrodynamic shear. Biophys J. 1997 Apr;72(4):1527–1540. doi: 10.1016/S0006-3495(97)78801-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel K. D., McEver R. P. Comparison of tethering and rolling of eosinophils and neutrophils through selectins and P-selectin glycoprotein ligand-1. J Immunol. 1997 Nov 1;159(9):4555–4565. [PubMed] [Google Scholar]
- Puri K. D., Finger E. B., Springer T. A. The faster kinetics of L-selectin than of E-selectin and P-selectin rolling at comparable binding strength. J Immunol. 1997 Jan 1;158(1):405–413. [PubMed] [Google Scholar]
- Rinker K. D., Prabhakar V., Truskey G. A. Effect of contact time and force on monocyte adhesion to vascular endothelium. Biophys J. 2001 Apr;80(4):1722–1732. doi: 10.1016/S0006-3495(01)76143-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shankaran H., Neelamegham S. Nonlinear flow affects hydrodynamic forces and neutrophil adhesion rates in cone-plate viscometers. Biophys J. 2001 Jun;80(6):2631–2648. doi: 10.1016/S0006-3495(01)76233-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shao J. Y., Ting-Beall H. P., Hochmuth R. M. Static and dynamic lengths of neutrophil microvilli. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6797–6802. doi: 10.1073/pnas.95.12.6797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinde Patil V. R., Campbell C. J., Yun Y. H., Slack S. M., Goetz D. J. Particle diameter influences adhesion under flow. Biophys J. 2001 Apr;80(4):1733–1743. doi: 10.1016/s0006-3495(01)76144-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon S. I., Chambers J. D., Butcher E., Sklar L. A. Neutrophil aggregation is beta 2-integrin- and L-selectin-dependent in blood and isolated cells. J Immunol. 1992 Oct 15;149(8):2765–2771. [PubMed] [Google Scholar]
- Simon S. I., Hu Y., Vestweber D., Smith C. W. Neutrophil tethering on E-selectin activates beta 2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. J Immunol. 2000 Apr 15;164(8):4348–4358. doi: 10.4049/jimmunol.164.8.4348. [DOI] [PubMed] [Google Scholar]
- Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
- Taylor A. D., Neelamegham S., Hellums J. D., Smith C. W., Simon S. I. Molecular dynamics of the transition from L-selectin- to beta 2-integrin-dependent neutrophil adhesion under defined hydrodynamic shear. Biophys J. 1996 Dec;71(6):3488–3500. doi: 10.1016/S0006-3495(96)79544-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walcheck B., Moore K. L., McEver R. P., Kishimoto T. K. Neutrophil-neutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-1. A mechanism that amplifies initial leukocyte accumulation of P-selectin in vitro. J Clin Invest. 1996 Sep 1;98(5):1081–1087. doi: 10.1172/JCI118888. [DOI] [PMC free article] [PubMed] [Google Scholar]
