Abstract
Fluorination of peptide side chains has been shown to perturb gramicidin channel conductance without significantly changing the average side chain structure, which, it is hoped, will allow detailed analysis of electrostatic modulation of current flow. Here we report a 1312-point potassium current-voltage-concentration data set for homodimeric channels formed from gramicidin A (gA) or any of eight fluorinated Trp analogs in both lecithin and monoglyceride bilayers. We fit the data with a three-barrier, two-site, two-ion (3B2S) kinetic model. The fluorination-induced changes in the rate constants were constrained by the same factor in both lipids. The rate constant changes were converted to transition-state free-energy differences for comparison with previous electrostatic potential energy differences based on an ab initio force field. The model allowed a reasonably good fit (chi = 8.29 with 1271 degrees of freedom). The measured changes were subtle. Nevertheless, the fitted energy perturbations agree well with electrostatic predictions for five of the eight peptides. For the other three analogs, the fitted changes suggested a reduced translocation barrier rather than the reduced exit barrier as predicted by electrostatics.
Full Text
The Full Text of this article is available as a PDF (718.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen O. S. Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step. Biophys J. 1983 Feb;41(2):147–165. doi: 10.1016/S0006-3495(83)84416-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson D. G., Shirts R. B., Cross T. A., Busath D. D. Noncontact dipole effects on channel permeation. V. Computed potentials for fluorinated gramicidin. Biophys J. 2001 Sep;81(3):1255–1264. doi: 10.1016/S0006-3495(01)75783-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker M. D., Greathouse D. V., Koeppe R. E., 2nd, Andersen O. S. Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Biochemistry. 1991 Sep 10;30(36):8830–8839. doi: 10.1021/bi00100a015. [DOI] [PubMed] [Google Scholar]
- Busath D. D., Thulin C. D., Hendershot R. W., Phillips L. R., Maughan P., Cole C. D., Bingham N. C., Morrison S., Baird L. C., Hendershot R. J. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels. Biophys J. 1998 Dec;75(6):2830–2844. doi: 10.1016/S0006-3495(98)77726-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotten M., Tian C., Busath D. D., Shirts R. B., Cross T. A. Modulating dipoles for structure-function correlations in the gramicidin A channel. Biochemistry. 1999 Jul 20;38(29):9185–9197. doi: 10.1021/bi982981m. [DOI] [PubMed] [Google Scholar]
- Daumas P., Benamar D., Heitz F., Ranjalahy-Rasoloarijao L., Mouden R., Lazaro R., Pullman A. How can the aromatic side-chains modulate the conductance of the gramicidin channel? A new approach using non-coded amino acids. Int J Pept Protein Res. 1991 Sep;38(3):218–228. doi: 10.1111/j.1399-3011.1991.tb01432.x. [DOI] [PubMed] [Google Scholar]
- Daumas P., Heitz F., Ranjalahy-Rasoloarijao L., Lazaro R. Gramicidin A analogs: influence of the substitution of the tryptophans by naphthylalanines. Biochimie. 1989 Jan;71(1):77–81. doi: 10.1016/0300-9084(89)90135-1. [DOI] [PubMed] [Google Scholar]
- Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
- Fields G. B., Fields C. G., Petefish J., Van Wart H. E., Cross T. A. Solid-phase peptide synthesis and solid-state NMR spectroscopy of [Ala3-15N][Val1]gramicidin A. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1384–1388. doi: 10.1073/pnas.85.5.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fonseca V., Daumas P., Ranjalahy-Rasoloarijao L., Heitz F., Lazaro R., Trudelle Y., Andersen O. S. Gramicidin channels that have no tryptophan residues. Biochemistry. 1992 Jun 16;31(23):5340–5350. doi: 10.1021/bi00138a014. [DOI] [PubMed] [Google Scholar]
- Hartmann H. A., Kirsch G. E., Drewe J. A., Taglialatela M., Joho R. H., Brown A. M. Exchange of conduction pathways between two related K+ channels. Science. 1991 Feb 22;251(4996):942–944. doi: 10.1126/science.2000495. [DOI] [PubMed] [Google Scholar]
- Heinemann S. H., Terlau H., Stühmer W., Imoto K., Numa S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature. 1992 Apr 2;356(6368):441–443. doi: 10.1038/356441a0. [DOI] [PubMed] [Google Scholar]
- Heitz F., Gavach C., Spach G., Trudelle Y. Analysis of the ion transfer through the channel of 9,11,13,15-phenylalanylgramicidin A. Biophys Chem. 1986 Jul;24(2):143–148. doi: 10.1016/0301-4622(86)80007-2. [DOI] [PubMed] [Google Scholar]
- Hille B., Schwarz W. Potassium channels as multi-ion single-file pores. J Gen Physiol. 1978 Oct;72(4):409–442. doi: 10.1085/jgp.72.4.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinton J. F., Fernandez J. Q., Shungu D. C., Whaley W. L., Koeppe R. E., 2nd, Millett F. S. TI-205 nuclear magnetic resonance determination of the thermodynamic parameters for the binding of monovalent cations to gramicidins A and C. Biophys J. 1988 Sep;54(3):527–533. doi: 10.1016/S0006-3495(88)82985-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imoto K., Busch C., Sakmann B., Mishina M., Konno T., Nakai J., Bujo H., Mori Y., Fukuda K., Numa S. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature. 1988 Oct 13;335(6191):645–648. doi: 10.1038/335645a0. [DOI] [PubMed] [Google Scholar]
- Jan L. Y., Jan Y. N. A superfamily of ion channels. Nature. 1990 Jun 21;345(6277):672–672. doi: 10.1038/345672a0. [DOI] [PubMed] [Google Scholar]
- Kim K. S., Vercauteren D. P., Welti M., Chin S., Clementi E. Interaction of K+ ion with the solvated gramicidin A transmembrane channel. Biophys J. 1985 Mar;47(3):327–335. doi: 10.1016/S0006-3495(85)83923-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koeppe R. E., 2nd, Mazet J. L., Andersen O. S. Distinction between dipolar and inductive effects in modulating the conductance of gramicidin channels. Biochemistry. 1990 Jan 16;29(2):512–520. doi: 10.1021/bi00454a027. [DOI] [PubMed] [Google Scholar]
- MacKinnon R., Yellen G. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science. 1990 Oct 12;250(4978):276–279. doi: 10.1126/science.2218530. [DOI] [PubMed] [Google Scholar]
- Roux B. Statistical mechanical equilibrium theory of selective ion channels. Biophys J. 1999 Jul;77(1):139–153. doi: 10.1016/S0006-3495(99)76878-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schumaker M. F., Pomès R., Roux B. Framework model for single proton conduction through gramicidin. Biophys J. 2001 Jan;80(1):12–30. doi: 10.1016/S0006-3495(01)75992-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson N., Thompson G., Cole C. D., Cotten M., Cross T. A., Busath D. D. Noncontact dipole effects on channel permeation. IV. Kinetic model of 5F-Trp(13) gramicidin A currents. Biophys J. 2001 Sep;81(3):1245–1254. doi: 10.1016/S0006-3495(01)75782-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urban B. W., Hladky S. B., Haydon D. A. Ion movements in gramicidin pores. An example of single-file transport. Biochim Biophys Acta. 1980 Nov 4;602(2):331–354. doi: 10.1016/0005-2736(80)90316-8. [DOI] [PubMed] [Google Scholar]
- Urban B. W., Hladky S. B. Ion transport in the simplest single file pore. Biochim Biophys Acta. 1979 Jul 5;554(2):410–429. doi: 10.1016/0005-2736(79)90381-x. [DOI] [PubMed] [Google Scholar]
- Wang K. W., Tripathi S., Hladky S. B. Ion binding constants for gramicidin A obtained from water permeability measurements. J Membr Biol. 1995 Feb;143(3):247–257. doi: 10.1007/BF00233453. [DOI] [PubMed] [Google Scholar]
- Williamson A. V., Sather W. A. Nonglutamate pore residues in ion selection and conduction in voltage-gated Ca2+ channels. Biophys J. 1999 Nov;77(5):2575–2589. doi: 10.1016/s0006-3495(99)77092-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang J., Ellinor P. T., Sather W. A., Zhang J. F., Tsien R. W. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature. 1993 Nov 11;366(6451):158–161. doi: 10.1038/366158a0. [DOI] [PubMed] [Google Scholar]
- Yool A. J., Schwarz T. L. Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature. 1991 Feb 21;349(6311):700–704. doi: 10.1038/349700a0. [DOI] [PubMed] [Google Scholar]
