Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Oct;83(4):1997–2006. doi: 10.1016/S0006-3495(02)73961-1

KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current.

Kamilla Angelo 1, Thomas Jespersen 1, Morten Grunnet 1, Morten Schak Nielsen 1, Dan A Klaerke 1, Søren-Peter Olesen 1
PMCID: PMC1302289  PMID: 12324418

Abstract

The function of the KCNE5 (KCNE1-like) protein has not previously been described. Here we show that KCNE5 induces both a time- and voltage-dependent modulation of the KCNQ1 current. Interaction of the KCNQ1 channel with KCNE5 shifted the voltage activation curve of KCNQ1 by more than 140 mV in the positive direction. The activation threshold of the KCNQ1+KCNE5 complex was +40 mV and the midpoint of activation was +116 mV. The KCNQ1+KCNE5 current activated slowly and deactivated rapidly as compared to the KCNQ1+KCNE1 at 22 degrees C; however, at physiological temperature, the activation time constant of the KCNQ1+KCNE5 current decreased fivefold, thus exceeding the activation rate of the KCNQ1+KCNE1 current. The KCNE5 subunit is specific for the KCNQ1 channel, as none of other members of the KCNQ-family or the human ether a-go-go related channel (hERG1) was affected by KCNE5. Four residues in the transmembrane domain of the KCNE5 protein were found to be important for the control of the voltage-dependent activation of the KCNQ1 current. We speculate that since KCNE5 is expressed in cardiac tissue it may here along with the KCNE1 beta-subunit regulate KCNQ1 channels. It is possible that KCNE5 shapes the I(Ks) current in certain parts of the mammalian heart.

Full Text

The Full Text of this article is available as a PDF (220.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott G. W., Butler M. H., Bendahhou S., Dalakas M. C., Ptacek L. J., Goldstein S. A. MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell. 2001 Jan 26;104(2):217–231. doi: 10.1016/s0092-8674(01)00207-0. [DOI] [PubMed] [Google Scholar]
  2. Abbott G. W., Sesti F., Splawski I., Buck M. E., Lehmann M. H., Timothy K. W., Keating M. T., Goldstein S. A. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell. 1999 Apr 16;97(2):175–187. doi: 10.1016/s0092-8674(00)80728-x. [DOI] [PubMed] [Google Scholar]
  3. Barhanin J., Lesage F., Guillemare E., Fink M., Lazdunski M., Romey G. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996 Nov 7;384(6604):78–80. doi: 10.1038/384078a0. [DOI] [PubMed] [Google Scholar]
  4. Baud C., Kado R. T., Marcher K. Sodium channels induced by depolarization of the Xenopus laevis oocyte. Proc Natl Acad Sci U S A. 1982 May;79(10):3188–3192. doi: 10.1073/pnas.79.10.3188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Franco D., Demolombe S., Kupershmidt S., Dumaine R., Dominguez J. N., Roden D., Antzelevitch C., Escande D., Moorman A. F. Divergent expression of delayed rectifier K(+) channel subunits during mouse heart development. Cardiovasc Res. 2001 Oct;52(1):65–75. doi: 10.1016/s0008-6363(01)00349-2. [DOI] [PubMed] [Google Scholar]
  6. Grahammer F., Warth R., Barhanin J., Bleich M., Hug M. J. The small conductance K+ channel, KCNQ1: expression, function, and subunit composition in murine trachea. J Biol Chem. 2001 Aug 29;276(45):42268–42275. doi: 10.1074/jbc.M105014200. [DOI] [PubMed] [Google Scholar]
  7. Grunnet M., Jensen B. S., Olesen S. P., Klaerke D. A. Apamin interacts with all subtypes of cloned small-conductance Ca2+-activated K+ channels. Pflugers Arch. 2001 Jan;441(4):544–550. doi: 10.1007/s004240000447. [DOI] [PubMed] [Google Scholar]
  8. Jespersen T., Grunnet M., Angelo K., Klaerke D. A., Olesen S. P. Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes. Biotechniques. 2002 Mar;32(3):536-8, 540. doi: 10.2144/02323st05. [DOI] [PubMed] [Google Scholar]
  9. Jonsson J. J., Renieri A., Gallagher P. G., Kashtan C. E., Cherniske E. M., Bruttini M., Piccini M., Vitelli F., Ballabio A., Pober B. R. Alport syndrome, mental retardation, midface hypoplasia, and elliptocytosis: a new X linked contiguous gene deletion syndrome? J Med Genet. 1998 Apr;35(4):273–278. doi: 10.1136/jmg.35.4.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kharkovets T., Hardelin J. P., Safieddine S., Schweizer M., El-Amraoui A., Petit C., Jentsch T. J. KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4333–4338. doi: 10.1073/pnas.97.8.4333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McDonald T. V., Yu Z., Ming Z., Palma E., Meyers M. B., Wang K. W., Goldstein S. A., Fishman G. I. A minK-HERG complex regulates the cardiac potassium current I(Kr). Nature. 1997 Jul 17;388(6639):289–292. doi: 10.1038/40882. [DOI] [PubMed] [Google Scholar]
  12. Melman Y. F., Domènech A., de la Luna S., McDonald T. V. Structural determinants of KvLQT1 control by the KCNE family of proteins. J Biol Chem. 2000 Dec 4;276(9):6439–6444. doi: 10.1074/jbc.M010713200. [DOI] [PubMed] [Google Scholar]
  13. Nerbonne J. M. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J Physiol. 2000 Jun 1;525(Pt 2):285–298. doi: 10.1111/j.1469-7793.2000.t01-1-00285.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Peleg Sagit, Varon Dalia, Ivanina Tatiana, Dessauer Carmen W., Dascal Nathan. G(alpha)(i) controls the gating of the G protein-activated K(+) channel, GIRK. Neuron. 2002 Jan 3;33(1):87–99. doi: 10.1016/s0896-6273(01)00567-0. [DOI] [PubMed] [Google Scholar]
  15. Piccini M., Vitelli F., Seri M., Galietta L. J., Moran O., Bulfone A., Banfi S., Pober B., Renieri A. KCNE1-like gene is deleted in AMME contiguous gene syndrome: identification and characterization of the human and mouse homologs. Genomics. 1999 Sep 15;60(3):251–257. doi: 10.1006/geno.1999.5904. [DOI] [PubMed] [Google Scholar]
  16. Robbins J. KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther. 2001 Apr;90(1):1–19. doi: 10.1016/s0163-7258(01)00116-4. [DOI] [PubMed] [Google Scholar]
  17. Rosati B., Pan Z., Lypen S., Wang H. S., Cohen I., Dixon J. E., McKinnon D. Regulation of KChIP2 potassium channel beta subunit gene expression underlies the gradient of transient outward current in canine and human ventricle. J Physiol. 2001 May 15;533(Pt 1):119–125. doi: 10.1111/j.1469-7793.2001.0119b.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sanguinetti M. C., Curran M. E., Zou A., Shen J., Spector P. S., Atkinson D. L., Keating M. T. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature. 1996 Nov 7;384(6604):80–83. doi: 10.1038/384080a0. [DOI] [PubMed] [Google Scholar]
  19. Sanguinetti M. C. Dysfunction of delayed rectifier potassium channels in an inherited cardiac arrhythmia. Ann N Y Acad Sci. 1999 Apr 30;868:406–413. doi: 10.1111/j.1749-6632.1999.tb11302.x. [DOI] [PubMed] [Google Scholar]
  20. Schroeder B. C., Waldegger S., Fehr S., Bleich M., Warth R., Greger R., Jentsch T. J. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature. 2000 Jan 13;403(6766):196–199. doi: 10.1038/35003200. [DOI] [PubMed] [Google Scholar]
  21. Seino S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol. 1999;61:337–362. doi: 10.1146/annurev.physiol.61.1.337. [DOI] [PubMed] [Google Scholar]
  22. Sesti F., Goldstein S. A. Single-channel characteristics of wild-type IKs channels and channels formed with two minK mutants that cause long QT syndrome. J Gen Physiol. 1998 Dec;112(6):651–663. doi: 10.1085/jgp.112.6.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sigworth F. J., Affolter H., Neher E. Design of the EPC-9, a computer-controlled patch-clamp amplifier. 2. Software. J Neurosci Methods. 1995 Feb;56(2):203–215. doi: 10.1016/0165-0270(94)00129-5. [DOI] [PubMed] [Google Scholar]
  24. Strøbaek D., Jørgensen T. D., Christophersen P., Ahring P. K., Olesen S. P. Pharmacological characterization of small-conductance Ca(2+)-activated K(+) channels stably expressed in HEK 293 cells. Br J Pharmacol. 2000 Mar;129(5):991–999. doi: 10.1038/sj.bjp.0703120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Takumi T., Ohkubo H., Nakanishi S. Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science. 1988 Nov 18;242(4881):1042–1045. doi: 10.1126/science.3194754. [DOI] [PubMed] [Google Scholar]
  26. Tinel N., Diochot S., Borsotto M., Lazdunski M., Barhanin J. KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel. EMBO J. 2000 Dec 1;19(23):6326–6330. doi: 10.1093/emboj/19.23.6326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tinel N., Diochot S., Lauritzen I., Barhanin J., Lazdunski M., Borsotto M. M-type KCNQ2-KCNQ3 potassium channels are modulated by the KCNE2 subunit. FEBS Lett. 2000 Sep 1;480(2-3):137–141. doi: 10.1016/s0014-5793(00)01918-9. [DOI] [PubMed] [Google Scholar]
  28. Yu H., Wu J., Potapova I., Wymore R. T., Holmes B., Zuckerman J., Pan Z., Wang H., Shi W., Robinson R. B. MinK-related peptide 1: A beta subunit for the HCN ion channel subunit family enhances expression and speeds activation. Circ Res. 2001 Jun 22;88(12):E84–E87. doi: 10.1161/hh1201.093511. [DOI] [PubMed] [Google Scholar]
  29. Zhang M., Jiang M., Tseng G. N. minK-related peptide 1 associates with Kv4.2 and modulates its gating function: potential role as beta subunit of cardiac transient outward channel? Circ Res. 2001 May 25;88(10):1012–1019. doi: 10.1161/hh1001.090839. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES