Abstract
Isothermal (27 degrees C) phase behavior of dimyristoyl phosphatidyl choline-cholesterol mixtures at various osmotic pressures and cholesterol contents was investigated by means of isothermal sorption microcalorimetry and (2)H-nuclear magnetic resonance. The calorimetric method allows for simultaneous measurement of the partial molar enthalpy and the chemical potential (the osmotic pressure) of water, thus providing an almost complete thermodynamic description of the sorption process. From the experimental results, the Pi(osm) - X(chol) and the ternary composition phase diagrams are constructed. We note that there are strong similarities between the Pi(osm) - X(chol) phase diagram and the previously reported T - X(chol) phase diagram at excess water. At high cholesterol contents a single liquid ordered (L(alpha)(o)) phase is present over the whole range of water contents, implying that this phase has a remarkable stability not only at decreasing temperature but also at increasing osmotic pressure. At low cholesterol contents, the microcalorimetric experiments confirm the extraordinary property of cholesterol not to cause any substantial melting point depression. One important conclusion in the present study is that the P(beta) phase can dissolve cholesterol more readily than the L(beta) phase and that the addition of cholesterol induces the P(beta) phase. Finally, the putative P(beta) - L(alpha)(o) periodic modulated structure is discussed.
Full Text
The Full Text of this article is available as a PDF (258.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almeida P. F., Vaz W. L., Thompson T. E. Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry. 1992 Jul 28;31(29):6739–6747. doi: 10.1021/bi00144a013. [DOI] [PubMed] [Google Scholar]
- Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
- Copeland B. R., McConnel H. M. The rippled structure in bilayer membranes of phosphatidylcholine and binary mixtures of phosphatidylcholine and cholesterol. Biochim Biophys Acta. 1980 Jun 20;599(1):95–109. doi: 10.1016/0005-2736(80)90059-0. [DOI] [PubMed] [Google Scholar]
- Demel R. A., De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976 Oct 26;457(2):109–132. doi: 10.1016/0304-4157(76)90008-3. [DOI] [PubMed] [Google Scholar]
- Faure C., Bonakdar L., Dufourc E. J. Determination of DMPC hydration in the L(alpha) and L(beta') phases by 2H solid state NMR of D2O. FEBS Lett. 1997 Apr 1;405(3):263–266. doi: 10.1016/s0014-5793(97)00201-9. [DOI] [PubMed] [Google Scholar]
- Hagen J. P., McConnell H. M. Liquid-liquid immiscibility in lipid monolayers. Biochim Biophys Acta. 1997 Oct 2;1329(1):7–11. doi: 10.1016/s0005-2736(97)00135-1. [DOI] [PubMed] [Google Scholar]
- Ipsen J. H., Karlström G., Mouritsen O. G., Wennerström H., Zuckermann M. J. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 1987 Nov 27;905(1):162–172. doi: 10.1016/0005-2736(87)90020-4. [DOI] [PubMed] [Google Scholar]
- Janiak M. J., Small D. M., Shipley G. G. Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J Biol Chem. 1979 Jul 10;254(13):6068–6078. [PubMed] [Google Scholar]
- Jendrasiak G. L., Mendible J. C. The effect of the phase transition on the hydration and electrical conductivity of phospholipids. Biochim Biophys Acta. 1976 Feb 23;424(2):133–148. doi: 10.1016/0005-2760(76)90183-1. [DOI] [PubMed] [Google Scholar]
- Lafleur M., Cullis P. R., Bloom M. Modulation of the orientational order profile of the lipid acyl chain in the L alpha phase. Eur Biophys J. 1990;19(2):55–62. doi: 10.1007/BF00185086. [DOI] [PubMed] [Google Scholar]
- Lis L. J., McAlister M., Fuller N., Rand R. P., Parsegian V. A. Interactions between neutral phospholipid bilayer membranes. Biophys J. 1982 Mar;37(3):657–665. [PMC free article] [PubMed] [Google Scholar]
- Marx J. Caveolae: a once-elusive structure gets some respect. Science. 2001 Nov 30;294(5548):1862–1865. doi: 10.1126/science.294.5548.1862. [DOI] [PubMed] [Google Scholar]
- Matuoka S., Kato S., Hatta I. Temperature change of the ripple structure in fully hydrated dimyristoylphosphatidylcholine/cholesterol multibilayers. Biophys J. 1994 Aug;67(2):728–736. doi: 10.1016/S0006-3495(94)80533-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntosh T. J., Magid A. D., Simon S. A. Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes. Biochemistry. 1989 Jan 10;28(1):17–25. doi: 10.1021/bi00427a004. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Magid A. D., Simon S. A. Steric repulsion between phosphatidylcholine bilayers. Biochemistry. 1987 Nov 17;26(23):7325–7332. doi: 10.1021/bi00397a020. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J. The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochim Biophys Acta. 1978 Oct 19;513(1):43–58. doi: 10.1016/0005-2736(78)90110-4. [DOI] [PubMed] [Google Scholar]
- Mortensen K., Pfeiffer W., Sackmann E., Knoll W. Structural properties of a phosphatidylcholine-cholesterol system as studied by small-angle neutron scattering: ripple structure and phase diagram. Biochim Biophys Acta. 1988 Nov 22;945(2):221–245. doi: 10.1016/0005-2736(88)90485-3. [DOI] [PubMed] [Google Scholar]
- Nielsen M., Miao L., Ipsen J. H., Zuckermann M. J., Mouritsen O. G. Off-lattice model for the phase behavior of lipid-cholesterol bilayers. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 May;59(5 Pt B):5790–5803. doi: 10.1103/physreve.59.5790. [DOI] [PubMed] [Google Scholar]
- Nilsson A., Holmgren A., Lindblom G. Fourier-transform infrared spectroscopy study of dioleoylphosphatidylcholine and monooleoylglycerol in lamellar and cubic liquid crystals. Biochemistry. 1991 Feb 26;30(8):2126–2133. doi: 10.1021/bi00222a017. [DOI] [PubMed] [Google Scholar]
- Parsegian V. A. Dimensions of the "intermediate" phase of dipalmitoylphosphatidylcholine. Biophys J. 1983 Dec;44(3):413–415. doi: 10.1016/S0006-3495(83)84315-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pohle W., Selle C., Fritzsche H., Binder H. Fourier transform infrared spectroscopy as a probe for the study of the hydration of lipid self-assemblies. I. Methodology and general phenomena. Biospectroscopy. 1998;4(4):267–280. doi: 10.1002/(sici)1520-6343(1998)4:4<267::aid-bspy5>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
- Radhakrishnan A., Anderson T. G., McConnell H. M. Condensed complexes, rafts, and the chemical activity of cholesterol in membranes. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12422–12427. doi: 10.1073/pnas.220418097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rock P., Thompson T. E., Tillack T. W. Persistence at low temperature of the P beta' ripple in dipalmitoylphosphatidylcholine multilamellar vesicles containing either glycosphingolipids or cholesterol. Biochim Biophys Acta. 1989 Mar 13;979(3):347–351. doi: 10.1016/0005-2736(89)90255-1. [DOI] [PubMed] [Google Scholar]
- Sankaram M. B., Thompson T. E. Cholesterol-induced fluid-phase immiscibility in membranes. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8686–8690. doi: 10.1073/pnas.88.19.8686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sankaram M. B., Thompson T. E. Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry. 1990 Nov 27;29(47):10670–10675. doi: 10.1021/bi00499a014. [DOI] [PubMed] [Google Scholar]
- Shimshick E. J., McConnell H. M. Lateral phase separations in binary mixtures of cholesterol and phospholipids. Biochem Biophys Res Commun. 1973 Jul 17;53(2):446–451. doi: 10.1016/0006-291x(73)90682-7. [DOI] [PubMed] [Google Scholar]
- Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
- Sparr E., Wennerström H. Responding phospholipid membranes--interplay between hydration and permeability. Biophys J. 2001 Aug;81(2):1014–1028. doi: 10.1016/S0006-3495(01)75759-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thewalt J. L., Bloom M. Phosphatidylcholine: cholesterol phase diagrams. Biophys J. 1992 Oct;63(4):1176–1181. doi: 10.1016/S0006-3495(92)81681-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ulmius J., Wennerström H., Lindblom G., Arvidson G. Deuteron nuclear magnetic resonance studies of phase equilibria in a lecithin-water system. Biochemistry. 1977 Dec 27;16(26):5742–5745. doi: 10.1021/bi00645a014. [DOI] [PubMed] [Google Scholar]
- Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]
- Wertz P. W., Kremer M., Squier C. A. Comparison of lipids from epidermal and palatal stratum corneum. J Invest Dermatol. 1992 Mar;98(3):375–378. doi: 10.1111/1523-1747.ep12499809. [DOI] [PubMed] [Google Scholar]
- Yeagle P. L. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985 Dec 9;822(3-4):267–287. doi: 10.1016/0304-4157(85)90011-5. [DOI] [PubMed] [Google Scholar]
