Abstract
The potassium channel KcsA from Streptomyces lividans has been reconstituted into bilayers of phosphatidylcholines and fluorescence spectroscopy has been used to characterize the response of KcsA to changes in bilayer thickness. The Trp residues in KcsA form two bands, one on each side of the membrane. Trp fluorescence emission spectra and the proportion of the Trp fluorescence intensity quenchable by I(-) hardly vary in the lipid chain length range C10 to C24, suggesting efficient hydrophobic matching between KcsA and the lipid bilayer over this range. Measurements of fluorescence quenching for KcsA reconstituted into mixtures of brominated and nonbrominated phospholipids have been analyzed to give binding constants of lipids for KcsA, relative to that for dioleoylphosphatidylcholine (di(C18:1)PC). Relative lipid binding constants increase by only a factor of three with increasing chain length from C10 to C22 with a decrease from C22 to C24. Strongest binding to di(C22:1)PC corresponds to a state in which the side chains of the lipid-exposed Trp residues are likely to be located within the hydrocarbon core of the lipid bilayer. It is suggested that matching of KcsA to thinner bilayers than di(C24:1)PC is achieved by tilting of the transmembrane alpha-helices in KcsA. Measurements of fluorescence quenching of KcsA in bilayers of brominated phospholipids as a function of phospholipid chain length suggest that in the chain length range C14 to C18 the Trp residues move further away from the center of the lipid bilayer with increasing chain length, which can be partly explained by a decrease in helix tilt angle with increasing bilayer thickness. In the chain length range C18 to C24 it is suggested that the Trp residues become more buried within the hydrocarbon core of the bilayer.
Full Text
The Full Text of this article is available as a PDF (742.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Bolen E. J., Holloway P. W. Quenching of tryptophan fluorescence by brominated phospholipid. Biochemistry. 1990 Oct 16;29(41):9638–9643. doi: 10.1021/bi00493a019. [DOI] [PubMed] [Google Scholar]
- Caffrey M., Feigenson G. W. Fluorescence quenching in model membranes. 3. Relationship between calcium adenosinetriphosphatase enzyme activity and the affinity of the protein for phosphatidylcholines with different acyl chain characteristics. Biochemistry. 1981 Mar 31;20(7):1949–1961. doi: 10.1021/bi00510a034. [DOI] [PubMed] [Google Scholar]
- Chung L. A., Lear J. D., DeGrado W. F. Fluorescence studies of the secondary structure and orientation of a model ion channel peptide in phospholipid vesicles. Biochemistry. 1992 Jul 21;31(28):6608–6616. doi: 10.1021/bi00143a035. [DOI] [PubMed] [Google Scholar]
- Cortes D. M., Cuello L. G., Perozo E. Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol. 2001 Feb;117(2):165–180. doi: 10.1085/jgp.117.2.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dewey T. G., Hammes G. G. Calculation on fluorescence resonance energy transfer on surfaces. Biophys J. 1980 Dec;32(3):1023–1035. doi: 10.1016/S0006-3495(80)85033-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
- Dumas F., Tocanne J. F., Leblanc G., Lebrun M. C. Consequences of hydrophobic mismatch between lipids and melibiose permease on melibiose transport. Biochemistry. 2000 Apr 25;39(16):4846–4854. doi: 10.1021/bi992634s. [DOI] [PubMed] [Google Scholar]
- East J. M., Lee A. G. Lipid selectivity of the calcium and magnesium ion dependent adenosinetriphosphatase, studied with fluorescence quenching by a brominated phospholipid. Biochemistry. 1982 Aug 17;21(17):4144–4151. doi: 10.1021/bi00260a035. [DOI] [PubMed] [Google Scholar]
- East J. M., Melville D., Lee A. G. Exchange rates and numbers of annular lipids for the calcium and magnesium ion dependent adenosinetriphosphatase. Biochemistry. 1985 May 21;24(11):2615–2623. doi: 10.1021/bi00332a005. [DOI] [PubMed] [Google Scholar]
- Esnouf R. M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):938–940. doi: 10.1107/s0907444998017363. [DOI] [PubMed] [Google Scholar]
- Fattal D. R., Ben-Shaul A. A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch. Biophys J. 1993 Nov;65(5):1795–1809. doi: 10.1016/S0006-3495(93)81249-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heginbotham L., Odessey E., Miller C. Tetrameric stoichiometry of a prokaryotic K+ channel. Biochemistry. 1997 Aug 19;36(33):10335–10342. doi: 10.1021/bi970988i. [DOI] [PubMed] [Google Scholar]
- Jacobs R. E., White S. H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry. 1989 Apr 18;28(8):3421–3437. doi: 10.1021/bi00434a042. [DOI] [PubMed] [Google Scholar]
- Killian J. A. Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):401–415. doi: 10.1016/s0304-4157(98)00017-3. [DOI] [PubMed] [Google Scholar]
- Koppel D. E., Fleming P. J., Strittmatter P. Intramembrane positions of membrane-bound chromophores determined by excitation energy transfer. Biochemistry. 1979 Nov 27;18(24):5450–5457. doi: 10.1021/bi00591a030. [DOI] [PubMed] [Google Scholar]
- Ladokhin A. S., Jayasinghe S., White S. H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal Biochem. 2000 Oct 15;285(2):235–245. doi: 10.1006/abio.2000.4773. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Landolt-Marticorena C., Williams K. A., Deber C. M., Reithmeier R. A. Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins. J Mol Biol. 1993 Feb 5;229(3):602–608. doi: 10.1006/jmbi.1993.1066. [DOI] [PubMed] [Google Scholar]
- Lee A. G. How lipids interact with an intrinsic membrane protein: the case of the calcium pump. Biochim Biophys Acta. 1998 Nov 10;1376(3):381–390. doi: 10.1016/s0304-4157(98)00010-0. [DOI] [PubMed] [Google Scholar]
- Lee A. G. Lipid phase transitions and phase diagrams. II. Mictures involving lipids. Biochim Biophys Acta. 1977 Nov 14;472(3-4):285–344. doi: 10.1016/0304-4157(77)90001-6. [DOI] [PubMed] [Google Scholar]
- Lewis B. A., Engelman D. M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol. 1983 May 15;166(2):211–217. doi: 10.1016/s0022-2836(83)80007-2. [DOI] [PubMed] [Google Scholar]
- Liu Y. S., Sompornpisut P., Perozo E. Structure of the KcsA channel intracellular gate in the open state. Nat Struct Biol. 2001 Oct;8(10):883–887. doi: 10.1038/nsb1001-883. [DOI] [PubMed] [Google Scholar]
- London E., Feigenson G. W. Fluorescence quenching in model membranes. 1. Characterization of quenching caused by a spin-labeled phospholipid. Biochemistry. 1981 Mar 31;20(7):1932–1938. doi: 10.1021/bi00510a032. [DOI] [PubMed] [Google Scholar]
- Mall S., Broadbridge R., Sharma R. P., East J. M., Lee A. G. Self-association of model transmembrane alpha-helices is modulated by lipid structure. Biochemistry. 2001 Oct 16;40(41):12379–12386. doi: 10.1021/bi011075y. [DOI] [PubMed] [Google Scholar]
- Mall S., Broadbridge R., Sharma R. P., Lee A. G., East J. M. Effects of aromatic residues at the ends of transmembrane alpha-helices on helix interactions with lipid bilayers. Biochemistry. 2000 Feb 29;39(8):2071–2078. doi: 10.1021/bi992205u. [DOI] [PubMed] [Google Scholar]
- Marsh D. Lipid-protein interactions and heterogeneous lipid distribution in membranes. Mol Membr Biol. 1995 Jan-Mar;12(1):59–64. doi: 10.3109/09687689509038496. [DOI] [PubMed] [Google Scholar]
- Mouritsen O. G., Bloom M. Mattress model of lipid-protein interactions in membranes. Biophys J. 1984 Aug;46(2):141–153. doi: 10.1016/S0006-3495(84)84007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mouritsen O. G., Bloom M. Models of lipid-protein interactions in membranes. Annu Rev Biophys Biomol Struct. 1993;22:145–171. doi: 10.1146/annurev.bb.22.060193.001045. [DOI] [PubMed] [Google Scholar]
- Nielsen C., Goulian M., Andersen O. S. Energetics of inclusion-induced bilayer deformations. Biophys J. 1998 Apr;74(4):1966–1983. doi: 10.1016/S0006-3495(98)77904-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Keeffe A. H., East J. M., Lee A. G. Selectivity in lipid binding to the bacterial outer membrane protein OmpF. Biophys J. 2000 Oct;79(4):2066–2074. doi: 10.1016/S0006-3495(00)76454-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pilot J. D., East J. M., Lee A. G. Effects of bilayer thickness on the activity of diacylglycerol kinase of Escherichia coli. Biochemistry. 2001 Jul 27;40(28):8188–8195. doi: 10.1021/bi0103258. [DOI] [PubMed] [Google Scholar]
- Ren J., Lew S., Wang Z., London E. Transmembrane orientation of hydrophobic alpha-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Biochemistry. 1997 Aug 19;36(33):10213–10220. doi: 10.1021/bi9709295. [DOI] [PubMed] [Google Scholar]
- Rooney E. K., Lee A. G. Fitting fluorescence emission spectra of probes bound to biological membranes. J Biochem Biophys Methods. 1986 Mar;12(3):175–189. doi: 10.1016/0165-022x(86)90031-x. [DOI] [PubMed] [Google Scholar]
- Roth M., Arnoux B., Ducruix A., Reiss-Husson F. Structure of the detergent phase and protein-detergent interactions in crystals of the wild-type (strain Y) Rhodobacter sphaeroides photochemical reaction center. Biochemistry. 1991 Oct 1;30(39):9403–9413. doi: 10.1021/bi00103a003. [DOI] [PubMed] [Google Scholar]
- Schrempf H., Schmidt O., Kümmerlen R., Hinnah S., Müller D., Betzler M., Steinkamp T., Wagner R. A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J. 1995 Nov 1;14(21):5170–5178. doi: 10.1002/j.1460-2075.1995.tb00201.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tieleman D. P., Marrink S. J., Berendsen H. J. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta. 1997 Nov 21;1331(3):235–270. doi: 10.1016/s0304-4157(97)00008-7. [DOI] [PubMed] [Google Scholar]
- Wallin E., Tsukihara T., Yoshikawa S., von Heijne G., Elofsson A. Architecture of helix bundle membrane proteins: an analysis of cytochrome c oxidase from bovine mitochondria. Protein Sci. 1997 Apr;6(4):808–815. doi: 10.1002/pro.5560060407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb R. J., East J. M., Sharma R. P., Lee A. G. Hydrophobic mismatch and the incorporation of peptides into lipid bilayers: a possible mechanism for retention in the Golgi. Biochemistry. 1998 Jan 13;37(2):673–679. doi: 10.1021/bi972441+. [DOI] [PubMed] [Google Scholar]
- White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]
- Wiener M. C., King G. I., White S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. I. Scaling of neutron data and the distributions of double bonds and water. Biophys J. 1991 Sep;60(3):568–576. doi: 10.1016/S0006-3495(91)82086-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiener M. C., White S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J. 1992 Feb;61(2):434–447. doi: 10.1016/S0006-3495(92)81849-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yau W. M., Wimley W. C., Gawrisch K., White S. H. The preference of tryptophan for membrane interfaces. Biochemistry. 1998 Oct 20;37(42):14713–14718. doi: 10.1021/bi980809c. [DOI] [PubMed] [Google Scholar]
- Zhou Y., Morais-Cabral J. H., Kaufman A., MacKinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature. 2001 Nov 1;414(6859):43–48. doi: 10.1038/35102009. [DOI] [PubMed] [Google Scholar]