Abstract
The behavior of cholesterol is different in mixtures with phosphatidylcholine as compared with phosphatidylserine. In (13)C cross polarization/magic angle spinning nuclear magnetic resonance spectra, resonance peaks of the vinylic carbons of cholesterol are a doublet in samples containing 0.3 or 0.5 mol fraction cholesterol with 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) or in cholesterol monohydrate crystals, but a singlet with mixtures of cholesterol and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC). At these molar fractions of cholesterol with POPS, resonances of the C-18 of cholesterol appear at the same chemical shifts as in pure cholesterol monohydrate crystals. These resonances do not appear in samples of POPS with 0.2 mol fraction cholesterol or with POPC up to 0.5 mol fraction cholesterol. In addition, there is another resonance from the cholesterol C18 that appears in all of the mixtures of phospholipid and cholesterol but not in pure cholesterol monohydrate crystals. Using direct polarization, the fraction of cholesterol present as crystallites in POPS with 0.5 mol fraction cholesterol is found to be 80%, whereas with the same mol fraction of cholesterol and POPC none of the cholesterol is crystalline. After many hours of incubation, cholesterol monohydrate crystals in POPS undergo a change that results in an increase in the intensity of certain resonances of cholesterol monohydrate in (13)C cross polarization/magic angle spinning nuclear magnetic resonance, indicating a rigidification of the C and D rings of cholesterol but not other regions of the molecule.
Full Text
The Full Text of this article is available as a PDF (236.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bach D., Wachtel E. Thermotropic properties of mixtures of negatively charged phospholipids with cholesterol in the presence and absence of Li+ or Ca2+ ions. Biochim Biophys Acta. 1989 Feb 13;979(1):11–19. doi: 10.1016/0005-2736(89)90517-8. [DOI] [PubMed] [Google Scholar]
- Batchelor J. G., Cushley R. J., Prestegard J. H. Carbon-13 Fourier transform nuclear magnetic resonance. 8. Role of steric and electric field effects in fatty acid spectra. J Org Chem. 1974 Jun 14;39(12):1698–1705. doi: 10.1021/jo00925a023. [DOI] [PubMed] [Google Scholar]
- Brainard J. R., Cordes E. H. Carbon-13 nuclear magnetic resonance studies of cholesterol-egg yolk phosphatidylcholine vesicles. Biochemistry. 1981 Aug 4;20(16):4607–4617. doi: 10.1021/bi00519a015. [DOI] [PubMed] [Google Scholar]
- Brown D. A., London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. doi: 10.1146/annurev.cellbio.14.1.111. [DOI] [PubMed] [Google Scholar]
- Browning J. L., Seelig J. Bilayers of phosphatidylserine: a deuterium and phosphorus nuclear magnetic resonance study. Biochemistry. 1980 Mar 18;19(6):1262–1270. doi: 10.1021/bi00547a034. [DOI] [PubMed] [Google Scholar]
- Buboltz J. T., Feigenson G. W. A novel strategy for the preparation of liposomes: rapid solvent exchange. Biochim Biophys Acta. 1999 Mar 4;1417(2):232–245. doi: 10.1016/s0005-2736(99)00006-1. [DOI] [PubMed] [Google Scholar]
- Epand R. M., Bach D., Borochov N., Wachtel E. Cholesterol crystalline polymorphism and the solubility of cholesterol in phosphatidylserine. Biophys J. 2000 Feb;78(2):866–873. doi: 10.1016/S0006-3495(00)76644-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epand R. M., Bach D., Epand R. F., Borochov N., Wachtel E. A new high-temperature transition of crystalline cholesterol in mixtures with phosphatidylserine. Biophys J. 2001 Sep;81(3):1511–1520. doi: 10.1016/S0006-3495(01)75805-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epand R. M., Maekawa S., Yip C. M., Epand R. F. Protein-induced formation of cholesterol-rich domains. Biochemistry. 2001 Sep 4;40(35):10514–10521. doi: 10.1021/bi010897s. [DOI] [PubMed] [Google Scholar]
- Fielding C. J., Fielding P. E. Cholesterol and caveolae: structural and functional relationships. Biochim Biophys Acta. 2000 Dec 15;1529(1-3):210–222. doi: 10.1016/s1388-1981(00)00150-5. [DOI] [PubMed] [Google Scholar]
- Guo W., Hamilton J. A. 13C MAS NMR studies of crystalline cholesterol and lipid mixtures modeling atherosclerotic plaques. Biophys J. 1996 Nov;71(5):2857–2868. doi: 10.1016/S0006-3495(96)79482-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo W., Hamilton J. A. Molecular organization and motions of cholesteryl esters in crystalline and liquid crystalline phases: a 13C and 1H magic angle spinning NMR study. Biochemistry. 1993 Sep 7;32(35):9038–9052. doi: 10.1021/bi00086a009. [DOI] [PubMed] [Google Scholar]
- Guo W., Morrisett J. D., DeBakey M. E., Lawrie G. M., Hamilton J. A. Quantification in situ of crystalline cholesterol and calcium phosphate hydroxyapatite in human atherosclerotic plaques by solid-state magic angle spinning NMR. Arterioscler Thromb Vasc Biol. 2000 Jun;20(6):1630–1636. doi: 10.1161/01.atv.20.6.1630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harder T., Scheiffele P., Verkade P., Simons K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol. 1998 May 18;141(4):929–942. doi: 10.1083/jcb.141.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holwerda D. L., Ellis P. D., Wuthier R. E. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies on interaction of calcium with phosphatidylserine. Biochemistry. 1981 Jan 20;20(2):418–423. doi: 10.1021/bi00505a030. [DOI] [PubMed] [Google Scholar]
- Huang T. H., Lee C. W., Das Gupta S. K., Blume A., Griffin R. G. A 13C and 2H nuclear magnetic resonance study of phosphatidylcholine/cholesterol interactions: characterization of liquid-gel phases. Biochemistry. 1993 Dec 7;32(48):13277–13287. doi: 10.1021/bi00211a041. [DOI] [PubMed] [Google Scholar]
- Huster D., Arnold K., Gawrisch K. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Biochemistry. 1998 Dec 8;37(49):17299–17308. doi: 10.1021/bi980078g. [DOI] [PubMed] [Google Scholar]
- Ipsen J. H., Karlström G., Mouritsen O. G., Wennerström H., Zuckermann M. J. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 1987 Nov 27;905(1):162–172. doi: 10.1016/0005-2736(87)90020-4. [DOI] [PubMed] [Google Scholar]
- Jacob R. F., Cenedella R. J., Mason R. P. Direct evidence for immiscible cholesterol domains in human ocular lens fiber cell plasma membranes. J Biol Chem. 1999 Oct 29;274(44):31613–31618. doi: 10.1074/jbc.274.44.31613. [DOI] [PubMed] [Google Scholar]
- Jacob R. F., Cenedella R. J., Mason R. P. Evidence for distinct cholesterol domains in fiber cell membranes from cataractous human lenses. J Biol Chem. 2001 Feb 1;276(17):13573–13578. doi: 10.1074/jbc.M010077200. [DOI] [PubMed] [Google Scholar]
- Kellner-Weibel G., Yancey P. G., Jerome W. G., Walser T., Mason R. P., Phillips M. C., Rothblat G. H. Crystallization of free cholesterol in model macrophage foam cells. Arterioscler Thromb Vasc Biol. 1999 Aug;19(8):1891–1898. doi: 10.1161/01.atv.19.8.1891. [DOI] [PubMed] [Google Scholar]
- Klinkner A. M., Waites C. R., Kerns W. D., Bugelski P. J. Evidence of foam cell and cholesterol crystal formation in macrophages incubated with oxidized LDL by fluorescence and electron microscopy. J Histochem Cytochem. 1995 Oct;43(10):1071–1078. doi: 10.1177/43.10.7560885. [DOI] [PubMed] [Google Scholar]
- Leventis R., Silvius J. R. Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol. Biophys J. 2001 Oct;81(4):2257–2267. doi: 10.1016/S0006-3495(01)75873-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loomis C. R., Shipley G. G., Small D. M. The phase behavior of hydrated cholesterol. J Lipid Res. 1979 May;20(4):525–535. [PubMed] [Google Scholar]
- McLaughlin A. C. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes: use of cobalt as a paramagnetic probe. Biochemistry. 1982 Sep 28;21(20):4879–4885. doi: 10.1021/bi00263a008. [DOI] [PubMed] [Google Scholar]
- McMullen T. P., Lewis R. N., McElhaney R. N. Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes. Biophys J. 2000 Oct;79(4):2056–2065. doi: 10.1016/S0006-3495(00)76453-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montez B., Oldfield E., Urbina J. A., Pekerar S., Husted C., Patterson J. Editing 13C-NMR spectra of membranes. Biochim Biophys Acta. 1993 Nov 7;1152(2):314–318. doi: 10.1016/0005-2736(93)90263-y. [DOI] [PubMed] [Google Scholar]
- Rietveld A., Simons K. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta. 1998 Nov 10;1376(3):467–479. doi: 10.1016/s0304-4157(98)00019-7. [DOI] [PubMed] [Google Scholar]
- Schroeder F., Nemecz G., Wood W. G., Joiner C., Morrot G., Ayraut-Jarrier M., Devaux P. F. Transmembrane distribution of sterol in the human erythrocyte. Biochim Biophys Acta. 1991 Jul 22;1066(2):183–192. doi: 10.1016/0005-2736(91)90185-b. [DOI] [PubMed] [Google Scholar]
- Tulenko T. N., Chen M., Mason P. E., Mason R. P. Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. J Lipid Res. 1998 May;39(5):947–956. [PubMed] [Google Scholar]
- Urbina J. A., Moreno B., Arnold W., Taron C. H., Orlean P., Oldfield E. A carbon-13 nuclear magnetic resonance spectroscopic study of inter-proton pair order parameters: a new approach to study order and dynamics in phospholipid membrane systems. Biophys J. 1998 Sep;75(3):1372–1383. doi: 10.1016/S0006-3495(98)74055-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]
- Warschawski D. E., Devaux P. F. Polarization transfer in lipid membranes. J Magn Reson. 2000 Aug;145(2):367–372. doi: 10.1006/jmre.2000.2135. [DOI] [PubMed] [Google Scholar]