Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Oct;83(4):2064–2073. doi: 10.1016/S0006-3495(02)73967-2

Saturated anionic phospholipids enhance transdermal transport by electroporation.

Arindam Sen 1, Ya-Li Zhao 1, Sek Wen Hui 1
PMCID: PMC1302295  PMID: 12324424

Abstract

Anionic phospholipids, but not cationic or neutral phospholipids, were found to enhance the transdermal transport of molecules by electroporation. When added as liposomes to the milieus of water-soluble molecules to be delivered through the epidermis of porcine skin by electroporation, these phospholipids enhance, by one to two orders of magnitude, the transdermal flux. Encapsulation of molecules in liposomes is not necessary. Dimyristoylphosphatidylserine (DMPS), phosphatidylserine from bovine brain (brain-PS), dioleoylphosphatidylserine (DOPS), and dioleoylphosphatidylglycerol (DOPG) were used to test factors affecting the potency of anionic lipid transport enhancers. DMPS with saturated acyl chains was found to be a much more potent transport enhancer than those with unsaturated acyl chains (DOPS and DOPG). There was no headgroup preference. Saturated DMPS was also more effective in delaying resistance recovery after pulsing, and with a greater affinity in the epidermis after pulsing. Using fluorescent carboxyl fluorescein and fluorescein isothiocyanate (FITC)-labeled Dextrans as test water-soluble molecules for transport, and rhodamine-labeled phospholipids to track anionic phospholipids, we found, by conventional and confocal fluorescence microscopy, that transport of water-soluble molecules was localized in local transport spots or regions (LTRs) created by the electroporation pulses. Anionic phospholipids, especially DMPS, were located at the center of the LTRs and spanned the entire thickness of the stratum corneum (SC). The degree of saturation of anionic phospholipids made no difference in the densities of LTRs created. We deduce that, after being driven into the epidermis by negative electric pulses, saturated anionic phospholipids mix and are retained better by the SC lipids. Anionic lipids prefer loose layers or vesicular rather than multilamellar forms, thereby prolonging the structural recovery of SC lipids to the native multilamellar form. In the presence of 1 mg/ml DMPS in the transport milieu, the flux of FITC-Dextran-4k was enhanced by 80-fold and reached 175 microg/cm(2)/min. Thus, the use of proper lipid enhancers greatly extends the upper size limit of transportable chemicals. Understanding the mechanism of lipid enhancers enables one to rationally design better enhancers for transdermal drug and vaccine delivery by electroporation.

Full Text

The Full Text of this article is available as a PDF (560.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen T., Segall E. M., Langer R., Weaver J. C. Skin electroporation: rapid measurements of the transdermal voltage and flux of four fluorescent molecules show a transition to large fluxes near 50 V. J Pharm Sci. 1998 Nov;87(11):1368–1374. doi: 10.1021/js980071k. [DOI] [PubMed] [Google Scholar]
  2. Clarys P., Alewaeters K., Jadoul A., Barel A., Manadas R. O., Préat V. In vitro percutaneous penetration through hairless rat skin: influence of temperature, vehicle and penetration enhancers. Eur J Pharm Biopharm. 1998 Nov;46(3):279–283. doi: 10.1016/s0939-6411(98)00044-7. [DOI] [PubMed] [Google Scholar]
  3. Gallo S. A., Oseroff A. R., Johnson P. G., Hui S. W. Characterization of electric-pulse-induced permeabilization of porcine skin using surface electrodes. Biophys J. 1997 Jun;72(6):2805–2811. doi: 10.1016/S0006-3495(97)78922-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gallo S. A., Sen A., Hensen M. L., Hui S. W. Time-dependent ultrastructural changes to porcine stratum corneum following an electric pulse. Biophys J. 1999 May;76(5):2824–2832. doi: 10.1016/S0006-3495(99)77436-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gallo Stephen A., Sen Arindam, Hensen Mary L., Hui Sek Wen. Temperature-dependent electrical and ultrastructural characterizations of porcine skin upon electroporation. Biophys J. 2002 Jan;82(1 Pt 1):109–119. doi: 10.1016/S0006-3495(02)75378-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ilic L., Gowrishankar T. R., Vaughan T. E., Herndon T. O., Weaver J. C. Spatially constrained skin electroporation with sodium thiosulfate and urea creates transdermal microconduits. J Control Release. 1999 Aug 27;61(1-2):185–202. doi: 10.1016/s0168-3659(99)00120-0. [DOI] [PubMed] [Google Scholar]
  7. Jadoul A., Lecouturier N., Mesens J., Caers W., Préat V. Transdermal alniditan delivery by skin electroporation. J Control Release. 1998 Aug 14;54(3):265–272. doi: 10.1016/s0168-3659(97)00195-8. [DOI] [PubMed] [Google Scholar]
  8. Jadoul A., Tanojo H., Préat V., Bouwstra J. A., Spies F., Boddé H. E. Electroperturbation of human stratum corneum fine structure by high voltage pulses: a freeze-fracture electron microscopy and differential thermal analysis study. J Investig Dermatol Symp Proc. 1998 Aug;3(2):153–158. doi: 10.1038/jidsymp.1998.31. [DOI] [PubMed] [Google Scholar]
  9. Johnson P. G., Gallo S. A., Hui S. W., Oseroff A. R. A pulsed electric field enhances cutaneous delivery of methylene blue in excised full-thickness porcine skin. J Invest Dermatol. 1998 Sep;111(3):457–463. doi: 10.1046/j.1523-1747.1998.00301.x. [DOI] [PubMed] [Google Scholar]
  10. Lombry C., Dujardin N., Préat V. Transdermal delivery of macromolecules using skin electroporation. Pharm Res. 2000 Jan;17(1):32–37. doi: 10.1023/a:1007510323344. [DOI] [PubMed] [Google Scholar]
  11. Misra A., Ganga S., Upadhyay P. Needle-free, non-adjuvanted skin immunization by electroporation-enhanced transdermal delivery of diphtheria toxoid and a candidate peptide vaccine against hepatitis B virus. Vaccine. 1999 Oct 14;18(5-6):517–523. doi: 10.1016/s0264-410x(99)00212-1. [DOI] [PubMed] [Google Scholar]
  12. Pliquett U. F., Zewert T. E., Chen T., Langer R., Weaver J. C. Imaging of fluorescent molecule and small ion transport through human stratum corneum during high voltage pulsing: localized transport regions are involved. Biophys Chem. 1996 Jan 16;58(1-2):185–204. doi: 10.1016/0301-4622(95)00098-4. [DOI] [PubMed] [Google Scholar]
  13. Prausnitz M. R., Bose V. G., Langer R., Weaver J. C. Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10504–10508. doi: 10.1073/pnas.90.22.10504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Prausnitz M. R., Gimm J. A., Guy R. H., Langer R., Weaver J. C., Cullander C. Imaging regions of transport across human stratum corneum during high-voltage and low-voltage exposures. J Pharm Sci. 1996 Dec;85(12):1363–1370. doi: 10.1021/js960020s. [DOI] [PubMed] [Google Scholar]
  15. Regnier V., Préat V. Localization of a FITC-labeled phosphorothioate oligodeoxynucleotide in the skin after topical delivery by iontophoresis and electroporation. Pharm Res. 1998 Oct;15(10):1596–1602. doi: 10.1023/a:1011963318843. [DOI] [PubMed] [Google Scholar]
  16. Regnier V., Tahiri A., André N., Lemaître M., Le Doan T., Préat V. Electroporation-mediated delivery of 3'-protected phosphodiester oligodeoxynucleotides to the skin. J Control Release. 2000 Jul 3;67(2-3):337–346. doi: 10.1016/s0168-3659(00)00223-6. [DOI] [PubMed] [Google Scholar]
  17. Seddon J. M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta. 1990 Feb 28;1031(1):1–69. doi: 10.1016/0304-4157(90)90002-t. [DOI] [PubMed] [Google Scholar]
  18. Stewart T. P., Hui S. W., Portis A. R., Jr, Papahadjopoulos D. Complex phase mixing of phosphatidylcholine and phosphatidylserine in multilamellar membrane vesicles. Biochim Biophys Acta. 1979 Sep 4;556(1):1–16. doi: 10.1016/0005-2736(79)90415-2. [DOI] [PubMed] [Google Scholar]
  19. Strömberg A., Ryttsén F., Chiu D. T., Davidson M., Eriksson P. S., Wilson C. F., Orwar O., Zare R. N. Manipulating the genetic identity and biochemical surface properties of individual cells with electric-field-induced fusion. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):7–11. doi: 10.1073/pnas.97.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Swartzendruber D. C., Wertz P. W., Kitko D. J., Madison K. C., Downing D. T. Molecular models of the intercellular lipid lamellae in mammalian stratum corneum. J Invest Dermatol. 1989 Feb;92(2):251–257. doi: 10.1111/1523-1747.ep12276794. [DOI] [PubMed] [Google Scholar]
  21. Takeuchi Y., Miyawaki K., Kamiyabu S., Fukushima S., Yamaoka Y., Kishimoto S., Taguchi K., Masai H., Kamata Y. Use of electroporation to accelerate the skin permeability enhancing action of oleic acid. Biol Pharm Bull. 2000 Jul;23(7):850–854. doi: 10.1248/bpb.23.850. [DOI] [PubMed] [Google Scholar]
  22. Vanbever R., Langers G., Montmayeur S., Préat V. Transdermal delivery of fentanyl: rapid onset of analgesia using skin electroporation. J Control Release. 1998 Jan 2;50(1-3):225–235. doi: 10.1016/s0168-3659(97)00147-8. [DOI] [PubMed] [Google Scholar]
  23. Vanbever R., Leroy M. A., Préat V. Transdermal permeation of neutral molecules by skin electroporation. J Control Release. 1998 Aug 14;54(3):243–250. doi: 10.1016/s0168-3659(97)00146-6. [DOI] [PubMed] [Google Scholar]
  24. Vanbever R., Prausnitz M. R., Préat V. Macromolecules as novel transdermal transport enhancers for skin electroporation. Pharm Res. 1997 May;14(5):638–644. doi: 10.1023/a:1012161313701. [DOI] [PubMed] [Google Scholar]
  25. Vanbever R, Préat V., V In vivo efficacy and safety of skin electroporation. Adv Drug Deliv Rev. 1999 Jan 4;35(1):77–88. doi: 10.1016/s0169-409x(98)00064-7. [DOI] [PubMed] [Google Scholar]
  26. Weaver J. C., Vanbever R., Vaughan T. E., Prausnitz M. R. Heparin alters transdermal transport associated with electroporation. Biochem Biophys Res Commun. 1997 May 29;234(3):637–640. doi: 10.1006/bbrc.1997.6701. [DOI] [PubMed] [Google Scholar]
  27. Zewert T. E., Pliquett U. F., Vanbever R., Langer R., Weaver J. C. Creation of transdermal pathways for macromolecule transport by skin electroporation and a low toxicity, pathway-enlarging molecule. Bioelectrochem Bioenerg. 1999 Oct;49(1):11–20. doi: 10.1016/s0302-4598(99)00056-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES