Abstract
Protein environments substantially influence the balance of molecular interactions that generate structural stability. Transmembrane helices exist in the relatively uniform low dielectric interstices of the lipid bilayer, largely devoid of water and with a very hydrophobic distribution of amino acid residues. Here, through an analysis of bacteriorhodopsin crystal structures and the transmembrane helix structure from M2 protein of influenza A, some helices are shown to be exceptionally uniform in hydrogen bond geometry, peptide plane tilt angle, and backbone torsion angles. Evidence from both the x-ray crystal structures and solid-state NMR structure suggests that the intramolecular backbone hydrogen bonds are shorter than their counterparts in water-soluble proteins. Moreover, the geometry is consistent with a dominance of electrostatic versus covalent contributions to these bonds. A comparison of structure as a function of resolution shows that as the structures become better characterized the helices become much more uniform, suggesting that there is a possibility that many more uniform helices will be observed, even among the moderate resolution membrane protein structures that are currently in the Protein Data Bank that do not show such features.
Full Text
The Full Text of this article is available as a PDF (353.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arumugam S., Pascal S., North C. L., Hu W., Lee K. C., Cotten M., Ketchem R. R., Xu F., Brenneman M., Kovacs F. Conformational trapping in a membrane environment: a regulatory mechanism for protein activity? Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5872–5876. doi: 10.1073/pnas.93.12.5872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. doi: 10.1016/0079-6107(84)90007-5. [DOI] [PubMed] [Google Scholar]
- Barlow D. J., Thornton J. M. Helix geometry in proteins. J Mol Biol. 1988 Jun 5;201(3):601–619. doi: 10.1016/0022-2836(88)90641-9. [DOI] [PubMed] [Google Scholar]
- Bauer C. M., Pinto L. H., Cross T. A., Lamb R. A. The influenza virus M2 ion channel protein: probing the structure of the transmembrane domain in intact cells by using engineered disulfide cross-linking. Virology. 1999 Feb 1;254(1):196–209. doi: 10.1006/viro.1998.9552. [DOI] [PubMed] [Google Scholar]
- Belrhali H., Nollert P., Royant A., Menzel C., Rosenbusch J. P., Landau E. M., Pebay-Peyroula E. Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution. Structure. 1999 Aug 15;7(8):909–917. doi: 10.1016/s0969-2126(99)80118-x. [DOI] [PubMed] [Google Scholar]
- Bowie J. U. Understanding membrane protein structure by design. Nat Struct Biol. 2000 Feb;7(2):91–94. doi: 10.1038/72454. [DOI] [PubMed] [Google Scholar]
- Bywater R. P., Thomas D., Vriend G. A sequence and structural study of transmembrane helices. J Comput Aided Mol Des. 2001 Jun;15(6):533–552. doi: 10.1023/a:1011197908960. [DOI] [PubMed] [Google Scholar]
- Chothia C., Levitt M., Richardson D. Structure of proteins: packing of alpha-helices and pleated sheets. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4130–4134. doi: 10.1073/pnas.74.10.4130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duff K. C., Ashley R. H. The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers. Virology. 1992 Sep;190(1):485–489. doi: 10.1016/0042-6822(92)91239-q. [DOI] [PubMed] [Google Scholar]
- Holsinger L. J., Lamb R. A. Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology. 1991 Jul;183(1):32–43. doi: 10.1016/0042-6822(91)90115-r. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Ketchem R. R., Hu W., Cross T. A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science. 1993 Sep 10;261(5127):1457–1460. doi: 10.1126/science.7690158. [DOI] [PubMed] [Google Scholar]
- Ketchem R., Roux B., Cross T. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure. 1997 Dec 15;5(12):1655–1669. doi: 10.1016/s0969-2126(97)00312-2. [DOI] [PubMed] [Google Scholar]
- Kim S., Quine J. R., Cross T. A. Complete cross-validation and R-factor calculation of a solid-state NMR derived structure. J Am Chem Soc. 2001 Aug 1;123(30):7292–7298. doi: 10.1021/ja003380x. [DOI] [PubMed] [Google Scholar]
- Kirkpatrick S., Gelatt C. D., Jr, Vecchi M. P. Optimization by simulated annealing. Science. 1983 May 13;220(4598):671–680. doi: 10.1126/science.220.4598.671. [DOI] [PubMed] [Google Scholar]
- Kukol A., Adams P. D., Rice L. M., Brunger A. T., Arkin T. I. Experimentally based orientational refinement of membrane protein models: A structure for the Influenza A M2 H+ channel. J Mol Biol. 1999 Feb 26;286(3):951–962. doi: 10.1006/jmbi.1998.2512. [DOI] [PubMed] [Google Scholar]
- Lee D. K., Ramamoorthy A. A simple one-dimensional solid-state NMR method to characterize the nuclear spin interaction tensors associated with the peptide bond. J Magn Reson. 1998 Jul;133(1):204–206. doi: 10.1006/jmre.1998.1442. [DOI] [PubMed] [Google Scholar]
- Luecke H., Schobert B., Cartailler J. P., Richter H. T., Rosengarth A., Needleman R., Lanyi J. K. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. J Mol Biol. 2000 Jul 28;300(5):1237–1255. doi: 10.1006/jmbi.2000.3884. [DOI] [PubMed] [Google Scholar]
- Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science. 1999 Oct 8;286(5438):255–261. doi: 10.1126/science.286.5438.255. [DOI] [PubMed] [Google Scholar]
- Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol. 1999 Aug 27;291(4):899–911. doi: 10.1006/jmbi.1999.3027. [DOI] [PubMed] [Google Scholar]
- Mai W., Hu W., Wang C., Cross T. A. Orientational constraints as three-dimensional structural constraints from chemical shift anisotropy: the polypeptide backbone of gramicidin A in a lipid bilayer. Protein Sci. 1993 Apr;2(4):532–542. doi: 10.1002/pro.5560020405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marassi F. M., Opella S. J. A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson. 2000 May;144(1):150–155. doi: 10.1006/jmre.2000.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAULING L., COREY R. B., BRANSON H. R. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A. 1951 Apr;37(4):205–211. doi: 10.1073/pnas.37.4.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pebay-Peyroula E., Rummel G., Rosenbusch J. P., Landau E. M. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science. 1997 Sep 12;277(5332):1676–1681. doi: 10.1126/science.277.5332.1676. [DOI] [PubMed] [Google Scholar]
- Popot J. L., Engelman D. M. Membrane protein folding and oligomerization: the two-stage model. Biochemistry. 1990 May 1;29(17):4031–4037. doi: 10.1021/bi00469a001. [DOI] [PubMed] [Google Scholar]
- Richmond T. J., Richards F. M. Packing of alpha-helices: geometrical constraints and contact areas. J Mol Biol. 1978 Mar 15;119(4):537–555. doi: 10.1016/0022-2836(78)90201-2. [DOI] [PubMed] [Google Scholar]
- Sakaguchi T., Tu Q., Pinto L. H., Lamb R. A. The active oligomeric state of the minimalistic influenza virus M2 ion channel is a tetramer. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5000–5005. doi: 10.1073/pnas.94.10.5000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato H., Takeda K., Tani K., Hino T., Okada T., Nakasako M., Kamiya N., Kouyama T. Specific lipid-protein interactions in a novel honeycomb lattice structure of bacteriorhodopsin. Acta Crystallogr D Biol Crystallogr. 1999 Jul;55(Pt 7):1251–1256. doi: 10.1107/s090744499900503x. [DOI] [PubMed] [Google Scholar]
- Schiffer M., Edmundson A. B. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys J. 1967 Mar;7(2):121–135. doi: 10.1016/S0006-3495(67)86579-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schweighofer K. J., Pohorille A. Computer simulation of ion channel gating: the M(2) channel of influenza A virus in a lipid bilayer. Biophys J. 2000 Jan;78(1):150–163. doi: 10.1016/S0006-3495(00)76581-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stickle D. F., Presta L. G., Dill K. A., Rose G. D. Hydrogen bonding in globular proteins. J Mol Biol. 1992 Aug 20;226(4):1143–1159. doi: 10.1016/0022-2836(92)91058-w. [DOI] [PubMed] [Google Scholar]
- Wang J., Denny J., Tian C., Kim S., Mo Y., Kovacs F., Song Z., Nishimura K., Gan Z., Fu R. Imaging membrane protein helical wheels. J Magn Reson. 2000 May;144(1):162–167. doi: 10.1006/jmre.2000.2037. [DOI] [PubMed] [Google Scholar]
- Wang J., Kim S., Kovacs F., Cross T. A. Structure of the transmembrane region of the M2 protein H(+) channel. Protein Sci. 2001 Nov;10(11):2241–2250. doi: 10.1110/ps.17901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu F., Cross T. A. Water: foldase activity in catalyzing polypeptide conformational rearrangements. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9057–9061. doi: 10.1073/pnas.96.16.9057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou F. X., Cocco M. J., Russ W. P., Brunger A. T., Engelman D. M. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat Struct Biol. 2000 Feb;7(2):154–160. doi: 10.1038/72430. [DOI] [PubMed] [Google Scholar]