Abstract
Cationic lipids are widely used for gene transfection, but their mechanism of action is still poorly understood. To improve this knowledge, a structure-function study was carried out with two pyridinium-based lipid analogs with identical headgroups but differing in alkyl chain (un)saturation, i.e., SAINT-2 (diC18:1) and SAINT-5 (diC18:0). Although both amphiphiles display transfection activity per se, DOPE strongly promotes SAINT-2-mediated transfection, but not that of SAINT-5, despite the fact that DOPE effectively facilitates plasmid dissociation from either lipoplex. This difference appears to correlate with membrane stiffness, dictated by the cationic lipid packing in the donor liposomes, which governs the kinetics of lipid recruitment by the plasmid upon lipoplex assembly. Because of its interaction with the relatively rigid SAINT-5 membranes, the plasmid becomes inappropriately condensed, which results in formation of structurally deformed lipoplexes. This structural deformation does not affect its cellular uptake but, rather, hampers plasmid translocation across endosomal and/or nuclear membranes. This is inferred from the observation that both lipoplexes effectively translocate much smaller oligonucleotides into cells. In fact, SAINT-5/DOPE-mediated transfection is greatly improved when, before lipoplex assembly, the plasmid is stabilized by condensation with polylysine. The results emphasize a role of the structural shape of the plasmid in gaining cytosolic/nuclear access. Moreover, it has been proposed that such a translocation is promoted when the lipoplex adopts the hexagonal phase, and data are presented that demonstrate that the lamellar SAINT-5/DOPE lipoplex adopts such a phase after its interaction with acidic phospholipid-containing membranes.
Full Text
The Full Text of this article is available as a PDF (671.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akao T., Fukumoto T., Ihara H., Ito A. Conformational change in DNA induced by cationic bilayer membranes. FEBS Lett. 1996 Aug 5;391(1-2):215–218. doi: 10.1016/0014-5793(96)00736-3. [DOI] [PubMed] [Google Scholar]
- Balasubramaniam R. P., Bennett M. J., Aberle A. M., Malone J. G., Nantz M. H., Malone R. W. Structural and functional analysis of cationic transfection lipids: the hydrophobic domain. Gene Ther. 1996 Feb;3(2):163–172. [PubMed] [Google Scholar]
- Bally MB, Harvie P, Wong FM, Kong S, Wasan EK, Reimer DL. Biological barriers to cellular delivery of lipid-based DNA carriers. Adv Drug Deliv Rev. 1999 Aug 20;38(3):291–315. doi: 10.1016/s0169-409x(99)00034-4. [DOI] [PubMed] [Google Scholar]
- Bennett C. F., Mirejovsky D., Crooke R. M., Tsai Y. J., Felgner J., Sridhar C. N., Wheeler C. J., Felgner P. L. Structural requirements for cationic lipid mediated phosphorothioate oligonucleotides delivery to cells in culture. J Drug Target. 1998;5(3):149–162. doi: 10.3109/10611869808995870. [DOI] [PubMed] [Google Scholar]
- Byk G., Dubertret C., Escriou V., Frederic M., Jaslin G., Rangara R., Pitard B., Crouzet J., Wils P., Schwartz B. Synthesis, activity, and structure--activity relationship studies of novel cationic lipids for DNA transfer. J Med Chem. 1998 Jan 15;41(2):229–235. doi: 10.1021/jm9704964. [DOI] [PubMed] [Google Scholar]
- Felgner J. H., Kumar R., Sridhar C. N., Wheeler C. J., Tsai Y. J., Border R., Ramsey P., Martin M., Felgner P. L. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem. 1994 Jan 28;269(4):2550–2561. [PubMed] [Google Scholar]
- Hafez I. M., Maurer N., Cullis P. R. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 2001 Aug;8(15):1188–1196. doi: 10.1038/sj.gt.3301506. [DOI] [PubMed] [Google Scholar]
- Hansma H. G., Sinsheimer R. L., Groppe J., Bruice T. C., Elings V., Gurley G., Bezanilla M., Mastrangelo I. A., Hough P. V., Hansma P. K. Recent advances in atomic force microscopy of DNA. Scanning. 1993 Sep-Oct;15(5):296–299. doi: 10.1002/sca.4950150509. [DOI] [PubMed] [Google Scholar]
- Harvie P., Wong F. M., Bally M. B. Characterization of lipid DNA interactions. I. Destabilization of bound lipids and DNA dissociation. Biophys J. 1998 Aug;75(2):1040–1051. doi: 10.1016/S0006-3495(98)77593-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis R. N., McElhaney R. N. Surface charge markedly attenuates the nonlamellar phase-forming propensities of lipid bilayer membranes: calorimetric and (31)P-nuclear magnetic resonance studies of mixtures of cationic, anionic, and zwitterionic lipids. Biophys J. 2000 Sep;79(3):1455–1464. doi: 10.1016/S0006-3495(00)76397-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Middaugh C. R., Evans R. K., Montgomery D. L., Casimiro D. R. Analysis of plasmid DNA from a pharmaceutical perspective. J Pharm Sci. 1998 Feb;87(2):130–146. doi: 10.1021/js970367a. [DOI] [PubMed] [Google Scholar]
- Möhwald H. Phospholipid and phospholipid-protein monolayers at the air/water interface. Annu Rev Phys Chem. 1990;41:441–476. doi: 10.1146/annurev.pc.41.100190.002301. [DOI] [PubMed] [Google Scholar]
- Oberle V., Bakowsky U., Zuhorn I. S., Hoekstra D. Lipoplex formation under equilibrium conditions reveals a three-step mechanism. Biophys J. 2000 Sep;79(3):1447–1454. doi: 10.1016/S0006-3495(00)76396-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scherman D., Bessodes M., Cameron B., Herscovici J., Hofland H., Pitard B., Soubrier F., Wils P., Crouzet J. Application of lipids and plasmid design for gene delivery to mammalian cells. Curr Opin Biotechnol. 1998 Oct;9(5):480–485. doi: 10.1016/s0958-1669(98)80033-5. [DOI] [PubMed] [Google Scholar]
- Shi F., Nomden A., Oberle V., Engberts J. B., Hoekstra D. Efficient cationic lipid-mediated delivery of antisense oligonucleotides into eukaryotic cells: down-regulation of the corticotropin-releasing factor receptor. Nucleic Acids Res. 2001 May 15;29(10):2079–2087. doi: 10.1093/nar/29.10.2079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smisterová J., Wagenaar A., Stuart M. C., Polushkin E., ten Brinke G., Hulst R., Engberts J. B., Hoekstra D. Molecular shape of the cationic lipid controls the structure of cationic lipid/dioleylphosphatidylethanolamine-DNA complexes and the efficiency of gene delivery. J Biol Chem. 2001 Oct 2;276(50):47615–47622. doi: 10.1074/jbc.M106199200. [DOI] [PubMed] [Google Scholar]
- Spector M. S., Schnur J. M. DNA ordering on a lipid membrane. Science. 1997 Feb 7;275(5301):791–792. doi: 10.1126/science.275.5301.791. [DOI] [PubMed] [Google Scholar]
- Stegmann T., Legendre J. Y. Gene transfer mediated by cationic lipids: lack of a correlation between lipid mixing and transfection. Biochim Biophys Acta. 1997 Apr 3;1325(1):71–79. doi: 10.1016/s0005-2736(96)00241-6. [DOI] [PubMed] [Google Scholar]
- Sternberg B., Sorgi F. L., Huang L. New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett. 1994 Dec 19;356(2-3):361–366. doi: 10.1016/0014-5793(94)01315-2. [DOI] [PubMed] [Google Scholar]
- Xu Y., Szoka F. C., Jr Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996 May 7;35(18):5616–5623. doi: 10.1021/bi9602019. [DOI] [PubMed] [Google Scholar]
- Zuhorn Inge S., Visser Willy H., Bakowsky Udo, Engberts Jan B. F. N., Hoekstra Dick. Interference of serum with lipoplex-cell interaction: modulation of intracellular processing. Biochim Biophys Acta. 2002 Feb 18;1560(1-2):25–36. doi: 10.1016/s0005-2736(01)00448-5. [DOI] [PubMed] [Google Scholar]
- van der Woude I., Wagenaar A., Meekel A. A., ter Beest M. B., Ruiters M. H., Engberts J. B., Hoekstra D. Novel pyridinium surfactants for efficient, nontoxic in vitro gene delivery. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1160–1165. doi: 10.1073/pnas.94.4.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]