Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Oct;83(4):2142–2151. doi: 10.1016/S0006-3495(02)73974-X

Relaxation kinetics following sudden Ca(2+) reduction in single myofibrils from skeletal muscle.

Chiara Tesi 1, Nicoletta Piroddi 1, Francesco Colomo 1, Corrado Poggesi 1
PMCID: PMC1302302  PMID: 12324431

Abstract

To investigate the roles of cross-bridge dissociation and cross-bridge-induced thin filament activation in the time course of muscle relaxation, we initiated force relaxation in single myofibrils from skeletal muscles by rapidly (approximately 10 ms) switching from high to low [Ca(2+)] solutions. Full force decay from maximal activation occurs in two phases: a slow one followed by a rapid one. The latter is initiated by sarcomere "give" and dominated by inter-sarcomere dynamics (see the companion paper, Stehle, R., M. Krueger, and G. Pfitzer. 2002. Biophys. J. 83:2152-2161), while the former occurs under nearly isometric conditions and is sensitive to mechanical perturbations. Decreasing the Ca(2+)-activated force preceding the start of relaxation does not increase the rate of the slow isometric phase, suggesting that cycling force-generating cross-bridges do not significantly sustain activation during relaxation. This conclusion is strengthened by the finding that the rate of isometric relaxation from maximum force to any given Ca(2+)-activated force level is similar to that of Ca(2+)-activation from rest to that given force. It is likely, therefore, that the slow rate of force decay in full relaxation simply reflects the rate at which cross-bridges leave force-generating states. Because increasing [P(i)] accelerates relaxation while increasing [MgADP] slows relaxation, both forward and backward transitions of cross-bridges from force-generating to non-force-generating states contribute to muscle relaxation.

Full Text

The Full Text of this article is available as a PDF (180.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araujo A., Walker J. W. Kinetics of tension development in skinned cardiac myocytes measured by photorelease of Ca2+. Am J Physiol. 1994 Nov;267(5 Pt 2):H1643–H1653. doi: 10.1152/ajpheart.1994.267.5.H1643. [DOI] [PubMed] [Google Scholar]
  2. Ashley C. C., Mulligan I. P., Lea T. J. Ca2+ and activation mechanisms in skeletal muscle. Q Rev Biophys. 1991 Feb;24(1):1–73. doi: 10.1017/s0033583500003267. [DOI] [PubMed] [Google Scholar]
  3. Brenner B., Chalovich J. M. Kinetics of thin filament activation probed by fluorescence of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle: implications for regulation of muscle contraction. Biophys J. 1999 Nov;77(5):2692–2708. doi: 10.1016/S0006-3495(99)77103-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brenner B. Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction. Proc Natl Acad Sci U S A. 1988 May;85(9):3265–3269. doi: 10.1073/pnas.85.9.3265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caputo C., Edman K. A., Lou F., Sun Y. B. Variation in myoplasmic Ca2+ concentration during contraction and relaxation studied by the indicator fluo-3 in frog muscle fibres. J Physiol. 1994 Jul 1;478(Pt 1):137–148. doi: 10.1113/jphysiol.1994.sp020237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chase P. B., Martyn D. A., Hannon J. D. Isometric force redevelopment of skinned muscle fibers from rabbit activated with and without Ca2+. Biophys J. 1994 Nov;67(5):1994–2001. doi: 10.1016/S0006-3495(94)80682-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cleworth D. R., Edman K. A. Changes in sarcomere length during isometric tension development in frog skeletal muscle. J Physiol. 1972 Dec;227(1):1–17. doi: 10.1113/jphysiol.1972.sp010016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Colomo F., Nencini S., Piroddi N., Poggesi C., Tesi C. Calcium dependence of the apparent rate of force generation in single striated muscle myofibrils activated by rapid solution changes. Adv Exp Med Biol. 1998;453:373–382. doi: 10.1007/978-1-4684-6039-1_42. [DOI] [PubMed] [Google Scholar]
  9. Colomo F., Poggesi C., Tesi C. Force responses to rapid length changes in single intact cells from frog heart. J Physiol. 1994 Mar 1;475(2):347–350. doi: 10.1113/jphysiol.1994.sp020075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldman Y. E., Hibberd M. G., Trentham D. R. Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5'-triphosphate. J Physiol. 1984 Sep;354:577–604. doi: 10.1113/jphysiol.1984.sp015394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gordon A. M., Homsher E., Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000 Apr;80(2):853–924. doi: 10.1152/physrev.2000.80.2.853. [DOI] [PubMed] [Google Scholar]
  12. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  13. He Z. H., Chillingworth R. K., Brune M., Corrie J. E., Trentham D. R., Webb M. R., Ferenczi M. A. ATPase kinetics on activation of rabbit and frog permeabilized isometric muscle fibres: a real time phosphate assay. J Physiol. 1997 May 15;501(Pt 1):125–148. doi: 10.1111/j.1469-7793.1997.125bo.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoskins B. K., Lipscomb S., Mulligan I. P., Ashley C. C. How do skinned skeletal muscle fibers relax? Biochem Biophys Res Commun. 1999 Jan 19;254(2):330–333. doi: 10.1006/bbrc.1998.9879. [DOI] [PubMed] [Google Scholar]
  15. Huxley A. F., Simmons R. M. Rapid 'give' and the tension 'shoulder' in the relaxation of frog muscle fibres. J Physiol. 1970 Sep;210(1):32P–33P. [PubMed] [Google Scholar]
  16. Jiang Y., Julian F. J. Effects of ramp shortening during linear phase of relaxation on [Ca2+]i in intact skeletal muscle fibers. Am J Physiol. 1999 Jan;276(1 Pt 1):C152–C160. doi: 10.1152/ajpcell.1999.276.1.C152. [DOI] [PubMed] [Google Scholar]
  17. Landesberg A., Sideman S. Coupling calcium binding to troponin C and cross-bridge cycling in skinned cardiac cells. Am J Physiol. 1994 Mar;266(3 Pt 2):H1260–H1271. doi: 10.1152/ajpheart.1994.266.3.H1260. [DOI] [PubMed] [Google Scholar]
  18. Lu Z., Swartz D. R., Metzger J. M., Moss R. L., Walker J. W. Regulation of force development studied by photolysis of caged ADP in rabbit skinned psoas fibers. Biophys J. 2001 Jul;81(1):334–344. doi: 10.1016/S0006-3495(01)75703-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Metzger J. M., Greaser M. L., Moss R. L. Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle. J Gen Physiol. 1989 May;93(5):855–883. doi: 10.1085/jgp.93.5.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Millar N. C., Homsher E. Kinetics of force generation and phosphate release in skinned rabbit soleus muscle fibers. Am J Physiol. 1992 May;262(5 Pt 1):C1239–C1245. doi: 10.1152/ajpcell.1992.262.5.C1239. [DOI] [PubMed] [Google Scholar]
  21. Millar N. C., Homsher E. The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. A steady-state and transient kinetic study. J Biol Chem. 1990 Nov 25;265(33):20234–20240. [PubMed] [Google Scholar]
  22. Palmer S., Kentish J. C. Roles of Ca2+ and crossbridge kinetics in determining the maximum rates of Ca2+ activation and relaxation in rat and guinea pig skinned trabeculae. Circ Res. 1998 Jul 27;83(2):179–186. doi: 10.1161/01.res.83.2.179. [DOI] [PubMed] [Google Scholar]
  23. Pate E., Franks-Skiba K., Cooke R. Depletion of phosphate in active muscle fibers probes actomyosin states within the powerstroke. Biophys J. 1998 Jan;74(1):369–380. doi: 10.1016/S0006-3495(98)77794-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Patel J. R., Diffee G. M., Huang X. P., Moss R. L. Phosphorylation of myosin regulatory light chain eliminates force-dependent changes in relaxation rates in skeletal muscle. Biophys J. 1998 Jan;74(1):360–368. doi: 10.1016/S0006-3495(98)77793-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Patel J. R., Diffee G. M., Moss R. L. Myosin regulatory light chain modulates the Ca2+ dependence of the kinetics of tension development in skeletal muscle fibers. Biophys J. 1996 May;70(5):2333–2340. doi: 10.1016/S0006-3495(96)79799-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Regnier M., Morris C., Homsher E. Regulation of the cross-bridge transition from a weakly to strongly bound state in skinned rabbit muscle fibers. Am J Physiol. 1995 Dec;269(6 Pt 1):C1532–C1539. doi: 10.1152/ajpcell.1995.269.6.C1532. [DOI] [PubMed] [Google Scholar]
  27. Stehle R., Krüger M., Pfitzer G. Force kinetics and individual sarcomere dynamics in cardiac myofibrils after rapid ca(2+) changes. Biophys J. 2002 Oct;83(4):2152–2161. doi: 10.1016/S0006-3495(02)73975-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tesi C., Colomo F., Nencini S., Piroddi N., Poggesi C. Modulation by substrate concentration of maximal shortening velocity and isometric force in single myofibrils from frog and rabbit fast skeletal muscle. J Physiol. 1999 May 1;516(Pt 3):847–853. doi: 10.1111/j.1469-7793.1999.0847u.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tesi C., Colomo F., Nencini S., Piroddi N., Poggesi C. The effect of inorganic phosphate on force generation in single myofibrils from rabbit skeletal muscle. Biophys J. 2000 Jun;78(6):3081–3092. doi: 10.1016/S0006-3495(00)76845-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wahr P. A., Johnson J. D., Rall J. A. Determinants of relaxation rate in skinned frog skeletal muscle fibers. Am J Physiol. 1998 Jun;274(6 Pt 1):C1608–C1615. doi: 10.1152/ajpcell.1998.274.6.C1608. [DOI] [PubMed] [Google Scholar]
  31. Wahr P. A., Rall J. A. Role of calcium and cross bridges in determining rate of force development in frog muscle fibers. Am J Physiol. 1997 May;272(5 Pt 1):C1664–C1671. doi: 10.1152/ajpcell.1997.272.5.C1664. [DOI] [PubMed] [Google Scholar]
  32. Walker J. W., Lu Z., Moss R. L. Effects of Ca2+ on the kinetics of phosphate release in skeletal muscle. J Biol Chem. 1992 Feb 5;267(4):2459–2466. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES