Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Oct;83(4):2152–2161. doi: 10.1016/S0006-3495(02)73975-1

Force kinetics and individual sarcomere dynamics in cardiac myofibrils after rapid ca(2+) changes.

R Stehle 1, M Krüger 1, G Pfitzer 1
PMCID: PMC1302303  PMID: 12324432

Abstract

Kinetics of force development and relaxation after rapid application and removal of Ca(2+) were measured by atomic force cantilevers on subcellular bundles of myofibrils prepared from guinea pig left ventricles. Changes in the structure of individual sarcomeres were simultaneously recorded by video microscopy. Upon Ca(2+) application, force developed with an exponential rate constant k(ACT) almost identical to k(TR), the rate constant of force redevelopment measured during steady-state Ca(2+) activation; this indicates that k(ACT) reflects isometric cross-bridge turnover kinetics. The kinetics of force relaxation after sudden Ca(2+) removal were markedly biphasic. An initial slow linear decline (rate constant k(LIN)) lasting for a time t(LIN) was abruptly followed by an ~20 times faster exponential decay (rate constant k(REL)). k(LIN) is similar to k(TR) measured at low activating [Ca(2+)], indicating that k(LIN) reflects isometric cross-bridge turnover kinetics under relaxed-like conditions (see also. Biophys. J. 83:2142-2151). Video microscopy revealed the following: invariably at t(LIN) a single sarcomere suddenly lengthened and returned to a relaxed-type structure. Originating from this sarcomere, structural relaxation propagated from one sarcomere to the next. Propagated sarcomeric relaxation, along with effects of stretch and P(i) on relaxation kinetics, supports an intersarcomeric chemomechanical coupling mechanism for rapid striated muscle relaxation in which cross-bridges conserve chemical energy by strain-induced rebinding of P(i).

Full Text

The Full Text of this article is available as a PDF (365.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anazawa T., Yasuda K., Ishiwata S. Spontaneous oscillation of tension and sarcomere length in skeletal myofibrils. Microscopic measurement and analysis. Biophys J. 1992 May;61(5):1099–1108. doi: 10.1016/S0006-3495(92)81919-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Araujo A., Walker J. W. Kinetics of tension development in skinned cardiac myocytes measured by photorelease of Ca2+. Am J Physiol. 1994 Nov;267(5 Pt 2):H1643–H1653. doi: 10.1152/ajpheart.1994.267.5.H1643. [DOI] [PubMed] [Google Scholar]
  3. Araujo A., Walker J. W. Phosphate release and force generation in cardiac myocytes investigated with caged phosphate and caged calcium. Biophys J. 1996 May;70(5):2316–2326. doi: 10.1016/S0006-3495(96)79797-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brandt P. W., Colomo F., Piroddi N., Poggesi C., Tesi C. Force regulation by Ca2+ in skinned single cardiac myocytes of frog. Biophys J. 1998 Apr;74(4):1994–2004. doi: 10.1016/S0006-3495(98)77906-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brenner B., Chalovich J. M. Kinetics of thin filament activation probed by fluorescence of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle: implications for regulation of muscle contraction. Biophys J. 1999 Nov;77(5):2692–2708. doi: 10.1016/S0006-3495(99)77103-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brenner B. Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction. Proc Natl Acad Sci U S A. 1988 May;85(9):3265–3269. doi: 10.1073/pnas.85.9.3265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cecchi G., Colomo F., Poggesi C., Tesi C. A force transducer and a length-ramp generator for mechanical investigations of frog-heart myocytes. Pflugers Arch. 1993 Apr;423(1-2):113–120. doi: 10.1007/BF00374968. [DOI] [PubMed] [Google Scholar]
  8. Colomo F., Nencini S., Piroddi N., Poggesi C., Tesi C. Calcium dependence of the apparent rate of force generation in single striated muscle myofibrils activated by rapid solution changes. Adv Exp Med Biol. 1998;453:373–382. doi: 10.1007/978-1-4684-6039-1_42. [DOI] [PubMed] [Google Scholar]
  9. Colomo F., Piroddi N., Poggesi C., te Kronnie G., Tesi C. Active and passive forces of isolated myofibrils from cardiac and fast skeletal muscle of the frog. J Physiol. 1997 Apr 15;500(Pt 2):535–548. doi: 10.1113/jphysiol.1997.sp022039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cooke R., Pate E. The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J. 1985 Nov;48(5):789–798. doi: 10.1016/S0006-3495(85)83837-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dong W., Rosenfeld S. S., Wang C. K., Gordon A. M., Cheung H. C. Kinetic studies of calcium binding to the regulatory site of troponin C from cardiac muscle. J Biol Chem. 1996 Jan 12;271(2):688–694. doi: 10.1074/jbc.271.2.688. [DOI] [PubMed] [Google Scholar]
  12. Edman K. A., Flitney F. W. Laser diffraction studies of sarcomere dynamics during 'isometric' relaxation in isolated muscle fibres of the frog. J Physiol. 1982 Aug;329:1–20. doi: 10.1113/jphysiol.1982.sp014287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eisenberg E., Hill T. L., Chen Y. Cross-bridge model of muscle contraction. Quantitative analysis. Biophys J. 1980 Feb;29(2):195–227. doi: 10.1016/S0006-3495(80)85126-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fearn L. A., Bartoo M. L., Myers J. A., Pollack G. H. An optical fiber transducer for single myofibril force measurement. IEEE Trans Biomed Eng. 1993 Nov;40(11):1127–1132. doi: 10.1109/10.245630. [DOI] [PubMed] [Google Scholar]
  15. Fitzsimons D. P., Patel J. R., Moss R. L. Role of myosin heavy chain composition in kinetics of force development and relaxation in rat myocardium. J Physiol. 1998 Nov 15;513(Pt 1):171–183. doi: 10.1111/j.1469-7793.1998.171by.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fujita H., Ishiwata S. Spontaneous oscillatory contraction without regulatory proteins in actin filament-reconstituted fibers. Biophys J. 1998 Sep;75(3):1439–1445. doi: 10.1016/S0006-3495(98)74062-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fukuda N., Ishiwata S. Effects of pH on spontaneous tension oscillation in skinned bovine cardiac muscle. Pflugers Arch. 1999 Jul;438(2):125–132. doi: 10.1007/s004240050889. [DOI] [PubMed] [Google Scholar]
  18. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  19. Hoskins B. K., Lipscomb S., Mulligan I. P., Ashley C. C. How do skinned skeletal muscle fibers relax? Biochem Biophys Res Commun. 1999 Jan 19;254(2):330–333. doi: 10.1006/bbrc.1998.9879. [DOI] [PubMed] [Google Scholar]
  20. Huxley A. F., Simmons R. M. Rapid 'give' and the tension 'shoulder' in the relaxation of frog muscle fibres. J Physiol. 1970 Sep;210(1):32P–33P. [PubMed] [Google Scholar]
  21. Johns E. C., Hodson E. A., Fish H., Lymn J. S., Thurston H., Mulligan I. P., Ashley C. C. Investigating the relaxation, following diazo-2 laser flash photolysis, of a skinned trabecular preparation from SHR hypertrophied left ventricle. Pflugers Arch. 1998 Jun;436(1):155–158. doi: 10.1007/s004240050617. [DOI] [PubMed] [Google Scholar]
  22. Johns E. C., Ryder K. O., Hodson E. A., Hart G., Mulligan I. P., Lipscomb S., Ashley C. C. Investigating the relaxation rate, following diazo-2 photolysis, of a skinned trabecular preparation from guinea-pig hypertrophied left ventricle. Pflugers Arch. 1999 Nov;438(6):771–777. doi: 10.1007/s004249900131. [DOI] [PubMed] [Google Scholar]
  23. Johns E. C., Simnett S. J., Mulligan I. P., Ashley C. C. Troponin I phosphorylation does not increase the rate of relaxation following laser flash photolysis of diazo-2 in guinea-pig skinned trabeculae. Pflugers Arch. 1997 Apr;433(6):842–844. doi: 10.1007/s004240050353. [DOI] [PubMed] [Google Scholar]
  24. Kentish J. C., McCloskey D. T., Layland J., Palmer S., Leiden J. M., Martin A. F., Solaro R. J. Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ Res. 2001 May 25;88(10):1059–1065. doi: 10.1161/hh1001.091640. [DOI] [PubMed] [Google Scholar]
  25. Linke W. A., Bartoo M. L., Pollack G. H. Spontaneous sarcomeric oscillations at intermediate activation levels in single isolated cardiac myofibrils. Circ Res. 1993 Oct;73(4):724–734. doi: 10.1161/01.res.73.4.724. [DOI] [PubMed] [Google Scholar]
  26. Linke W. A., Popov V. I., Pollack G. H. Passive and active tension in single cardiac myofibrils. Biophys J. 1994 Aug;67(2):782–792. doi: 10.1016/S0006-3495(94)80538-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lu Z., Swartz D. R., Metzger J. M., Moss R. L., Walker J. W. Regulation of force development studied by photolysis of caged ADP in rabbit skinned psoas fibers. Biophys J. 2001 Jul;81(1):334–344. doi: 10.1016/S0006-3495(01)75703-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Millar N. C., Homsher E. The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. A steady-state and transient kinetic study. J Biol Chem. 1990 Nov 25;265(33):20234–20240. [PubMed] [Google Scholar]
  29. Palmer S., Kentish J. C. Differential effects of the Ca2+ sensitizers caffeine and CGP 48506 on the relaxation rate of rat skinned cardiac trabeculae. Circ Res. 1997 May;80(5):682–687. doi: 10.1161/01.res.80.5.682. [DOI] [PubMed] [Google Scholar]
  30. Palmer S., Kentish J. C. Roles of Ca2+ and crossbridge kinetics in determining the maximum rates of Ca2+ activation and relaxation in rat and guinea pig skinned trabeculae. Circ Res. 1998 Jul 27;83(2):179–186. doi: 10.1161/01.res.83.2.179. [DOI] [PubMed] [Google Scholar]
  31. Pate E., Cooke R. A model of crossbridge action: the effects of ATP, ADP and Pi. J Muscle Res Cell Motil. 1989 Jun;10(3):181–196. doi: 10.1007/BF01739809. [DOI] [PubMed] [Google Scholar]
  32. Piazzesi G., Linari M., Reconditi M., Vanzi F., Lombardi V. Cross-bridge detachment and attachment following a step stretch imposed on active single frog muscle fibres. J Physiol. 1997 Jan 1;498(Pt 1):3–15. doi: 10.1113/jphysiol.1997.sp021837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rall J. A., Wahr P. A. Role of calcium and crossbridges in modulation of rates of force development and relaxation in skinned muscle fibers. Adv Exp Med Biol. 1998;453:219–228. doi: 10.1007/978-1-4684-6039-1_25. [DOI] [PubMed] [Google Scholar]
  34. Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
  35. Shimizu H., Fujita T., Ishiwata S. Regulation of tension development by MgADP and Pi without Ca2+. Role in spontaneous tension oscillation of skeletal muscle. Biophys J. 1992 May;61(5):1087–1098. doi: 10.1016/S0006-3495(92)81918-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Simnett S. J., Johns E. C., Lipscomb S., Mulligan I. P., Ashley C. C. Effect of pH, phosphate, and ADP on relaxation of myocardium after photolysis of diazo 2. Am J Physiol. 1998 Sep;275(3 Pt 2):H951–H960. doi: 10.1152/ajpheart.1998.275.3.H951. [DOI] [PubMed] [Google Scholar]
  37. Stehle R., Brenner B. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding. Biophys J. 2000 Mar;78(3):1458–1473. doi: 10.1016/S0006-3495(00)76699-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tasche C., Meyhöfer E., Brenner B. A force transducer for measuring mechanical properties of single cardiac myocytes. Am J Physiol. 1999 Dec;277(6 Pt 2):H2400–H2408. doi: 10.1152/ajpheart.1999.277.6.H2400. [DOI] [PubMed] [Google Scholar]
  39. Tesi C., Colomo F., Nencini S., Piroddi N., Poggesi C. The effect of inorganic phosphate on force generation in single myofibrils from rabbit skeletal muscle. Biophys J. 2000 Jun;78(6):3081–3092. doi: 10.1016/S0006-3495(00)76845-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tesi Chiara, Piroddi Nicoletta, Colomo Francesco, Poggesi Corrado. Relaxation kinetics following sudden Ca(2+) reduction in single myofibrils from skeletal muscle. Biophys J. 2002 Oct;83(4):2142–2151. doi: 10.1016/S0006-3495(02)73974-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wolff M. R., McDonald K. S., Moss R. L. Rate of tension development in cardiac muscle varies with level of activator calcium. Circ Res. 1995 Jan;76(1):154–160. doi: 10.1161/01.res.76.1.154. [DOI] [PubMed] [Google Scholar]
  42. Zhang R., Zhao J., Mandveno A., Potter J. D. Cardiac troponin I phosphorylation increases the rate of cardiac muscle relaxation. Circ Res. 1995 Jun;76(6):1028–1035. doi: 10.1161/01.res.76.6.1028. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES