Abstract
Globular proteins are peculiar solids that display both local stability of their conformation and the ability to undergo large cooperative changes of shape (conformational changes). If one forces a large deformation of the molecule, such that the structure is necessarily changed, it is not obvious whether the deformed globule can still remain a solid or whether it will melt. Is it possible to plastically deform a protein? Here we investigate this question with a micro-mechanical experiment on a small region (approximately 10 molecules) of a protein monolayer adsorbed on a rigid surface. For the two proteins studied, albumin and myoglobin, we observed that the molecules can be substantially deformed (approximately 1-2 nm deformation) by comparatively small stresses applied for sufficiently long times. The deformation is irreversible, and the protein remains in the solid state (i.e., displays a nonzero shear modulus). The dynamics of the deformation is approximately logarithmic in time, similar to creep in solids. These results show that globular proteins adsorbed on a surface can be plastically deformed.
Full Text
The Full Text of this article is available as a PDF (151.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen S., Davies J., Dawkes A. C., Davies M. C., Edwards J. C., Parker M. C., Roberts C. J., Sefton J., Tendler S. J., Williams P. M. In situ observation of streptavidin-biotin binding on an immunoassay well surface using an atomic force microscope. FEBS Lett. 1996 Jul 22;390(2):161–164. doi: 10.1016/0014-5793(96)00651-5. [DOI] [PubMed] [Google Scholar]
- Ansari A., Berendzen J., Bowne S. F., Frauenfelder H., Iben I. E., Sauke T. B., Shyamsunder E., Young R. D. Protein states and proteinquakes. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5000–5004. doi: 10.1073/pnas.82.15.5000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
- Best R. B., Li B., Steward A., Daggett V., Clarke J. Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys J. 2001 Oct;81(4):2344–2356. doi: 10.1016/S0006-3495(01)75881-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creighton T. E. Protein folding. Biochem J. 1990 Aug 15;270(1):1–16. doi: 10.1042/bj2700001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elber R., Karplus M. Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science. 1987 Jan 16;235(4786):318–321. doi: 10.1126/science.3798113. [DOI] [PubMed] [Google Scholar]
- Elender G., Kühner M., Sackmann E. Functionalisation of Si/SiO2 and glass surfaces with ultrathin dextran films and deposition of lipid bilayers. Biosens Bioelectron. 1996;11(6-7):565–577. doi: 10.1016/0956-5663(96)83292-1. [DOI] [PubMed] [Google Scholar]
- Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Florin E. L., Moy V. T., Gaub H. E. Adhesion forces between individual ligand-receptor pairs. Science. 1994 Apr 15;264(5157):415–417. doi: 10.1126/science.8153628. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
- He X. M., Carter D. C. Atomic structure and chemistry of human serum albumin. Nature. 1992 Jul 16;358(6383):209–215. doi: 10.1038/358209a0. [DOI] [PubMed] [Google Scholar]
- Hinterdorfer P., Baumgartner W., Gruber H. J., Schilcher K., Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3477–3481. doi: 10.1073/pnas.93.8.3477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kellermayer M. S., Smith S. B., Granzier H. L., Bustamante C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science. 1997 May 16;276(5315):1112–1116. doi: 10.1126/science.276.5315.1112. [DOI] [PubMed] [Google Scholar]
- Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan 7;397(6714):50–53. doi: 10.1038/16219. [DOI] [PubMed] [Google Scholar]
- Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
- Rosser R. W., Schrag J. L., Ferry J. D., Greaser M. Viscoelastic properties of very dilute paramyosin solutions. Macromolecules. 1977 Sep-Oct;10(5):978–980. doi: 10.1021/ma60059a018. [DOI] [PubMed] [Google Scholar]
- Shao J. Y., Hochmuth R. M. Mechanical anchoring strength of L-selectin, beta2 integrins, and CD45 to neutrophil cytoskeleton and membrane. Biophys J. 1999 Jul;77(1):587–596. doi: 10.1016/S0006-3495(99)76915-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh-Zocchi M., Andreasen A., Zocchi G. Osmotic pressure contribution of albumin to colloidal interactions. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6711–6715. doi: 10.1073/pnas.96.12.6711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strick T. R., Allemand J. F., Bensimon D., Croquette V. Behavior of supercoiled DNA. Biophys J. 1998 Apr;74(4):2016–2028. doi: 10.1016/S0006-3495(98)77908-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamura Y., Suzuki N., Mihashi K. Adiabatic compressibility of myosin subfragment-1 and heavy meromyosin with or without nucleotide. Biophys J. 1993 Nov;65(5):1899–1905. doi: 10.1016/S0006-3495(93)81260-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tristram-Nagle S., Petrache H. I., Suter R. M., Nagle J. F. Effect of substrate roughness on D spacing supports theoretical resolution of vapor pressure paradox. Biophys J. 1998 Mar;74(3):1421–1427. doi: 10.1016/S0006-3495(98)77854-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tskhovrebova L., Trinick J., Sleep J. A., Simmons R. M. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature. 1997 May 15;387(6630):308–312. doi: 10.1038/387308a0. [DOI] [PubMed] [Google Scholar]
- Wong J., Chilkoti A., Moy V. T. Direct force measurements of the streptavidin-biotin interaction. Biomol Eng. 1999 Dec 31;16(1-4):45–55. doi: 10.1016/s1050-3862(99)00035-2. [DOI] [PubMed] [Google Scholar]
- Zocchi G. Force measurements on single molecular contacts through evanescent wave microscopy. Biophys J. 2001 Nov;81(5):2946–2953. doi: 10.1016/S0006-3495(01)75934-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zocchi G. Proteins unfold in steps. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10647–10651. doi: 10.1073/pnas.94.20.10647. [DOI] [PMC free article] [PubMed] [Google Scholar]
