Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Oct;83(4):2219–2230. doi: 10.1016/S0006-3495(02)73982-9

Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature.

Daniel E Otzen 1
PMCID: PMC1302310  PMID: 12324439

Abstract

The 101-residue monomeric protein S6 unfolds in the anionic detergent sodium dodecyl sulfate (SDS) above the critical micelle concentration, with unfolding rates varying according to two different modes. Our group has proposed that spherical micelles lead to saturation kinetics in unfolding (mode 1), while cylindrical micelles prevalent at higher SDS concentrations induce a power-law dependent increase in the unfolding rate (mode 2). Here I investigate in more detail how micellar properties affect protein unfolding. High NaCl concentrations, which induce cylindrical micelles, favor mode 2. This is consistent with our model, though other effects such as electrostatic screening cannot be discounted. Furthermore, unfolding does not occur in mode 2 in the cationic detergent LTAB, which is unable to form cylindrical micelles. A strong retardation of unfolding occurs at higher LTAB concentrations, possibly due to the formation of dead-end protein-detergent complexes. A similar, albeit much weaker, effect is seen in SDS in the absence of salt. Chymotrypsin inhibitor 2 exhibits the same modes of unfolding in SDS as S6, indicating that this type of protein unfolding is not specific for S6. The unfolding process in mode 1 has an activation barrier similar in magnitude to that in water, while the activation barrier in mode 2 is strongly concentration-dependent. The strong pH-dependence of unfolding in SDS and LTAB suggests that the rate of unfolding in anionic detergent is modulated by repulsion between detergent headgroups and anionic side chains, while cationic side chains modulate unfolding rates in cationic detergents.

Full Text

The Full Text of this article is available as a PDF (152.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin R. L. How Hofmeister ion interactions affect protein stability. Biophys J. 1996 Oct;71(4):2056–2063. doi: 10.1016/S0006-3495(96)79404-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bordbar AK, Saboury AA, Housaindokht MR, Moosavi-Movahedi AA. Statistical Effects of the Binding of Ionic Surfactant to Protein. J Colloid Interface Sci. 1997 Aug 15;192(2):415–419. doi: 10.1006/jcis.1997.4999. [DOI] [PubMed] [Google Scholar]
  3. Cornish-Bowden Athel. Enthalpy-entropy compensation: a phantom phenomenon. J Biosci. 2002 Mar;27(2):121–126. doi: 10.1007/BF02703768. [DOI] [PubMed] [Google Scholar]
  4. Decker R. V., Foster J. F. The interaction of bovine plasma albumin with detergent anions. Stoichiometry and mechanism of binding of alkylbenzenesulfonates. Biochemistry. 1966 Apr;5(4):1242–1254. doi: 10.1021/bi00868a018. [DOI] [PubMed] [Google Scholar]
  5. Fersht A. R., Shi J. P., Knill-Jones J., Lowe D. M., Wilkinson A. J., Blow D. M., Brick P., Carter P., Waye M. M., Winter G. Hydrogen bonding and biological specificity analysed by protein engineering. Nature. 1985 Mar 21;314(6008):235–238. doi: 10.1038/314235a0. [DOI] [PubMed] [Google Scholar]
  6. Fromherz P. Lipid coumarin dye as a probe of interfacial electrical potential in biomembranes. Methods Enzymol. 1989;171:376–387. doi: 10.1016/s0076-6879(89)71021-1. [DOI] [PubMed] [Google Scholar]
  7. Hagen S. J., Hofrichter J., Szabo A., Eaton W. A. Diffusion-limited contact formation in unfolded cytochrome c: estimating the maximum rate of protein folding. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11615–11617. doi: 10.1073/pnas.93.21.11615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hunt J. F., Earnest T. N., Bousché O., Kalghatgi K., Reilly K., Horváth C., Rothschild K. J., Engelman D. M. A biophysical study of integral membrane protein folding. Biochemistry. 1997 Dec 9;36(49):15156–15176. doi: 10.1021/bi970146j. [DOI] [PubMed] [Google Scholar]
  9. Ibel K., May R. P., Kirschner K., Szadkowski H., Mascher E., Lundahl P. Protein-decorated micelle structure of sodium-dodecyl-sulfate--protein complexes as determined by neutron scattering. Eur J Biochem. 1990 Jun 20;190(2):311–318. doi: 10.1111/j.1432-1033.1990.tb15578.x. [DOI] [PubMed] [Google Scholar]
  10. Ikai A. Stepwise degradation of serum low denisty lipoprotein by sodium dodecyl sulfate. J Biochem. 1976 Mar;79(3):679–688. doi: 10.1093/oxfordjournals.jbchem.a131113. [DOI] [PubMed] [Google Scholar]
  11. Jackson S. E., Moracci M., elMasry N., Johnson C. M., Fersht A. R. Effect of cavity-creating mutations in the hydrophobic core of chymotrypsin inhibitor 2. Biochemistry. 1993 Oct 26;32(42):11259–11269. doi: 10.1021/bi00093a001. [DOI] [PubMed] [Google Scholar]
  12. Jones M. N., Skinner H. A., Tipping E. The interaction between bovine serum albumin and surfactants. Biochem J. 1975 May;147(2):229–234. doi: 10.1042/bj1470229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones M. N., Skinner H. A., Tipping E., Wilkinson A. The interaction between ribonuclease A and surfactants. Biochem J. 1973 Sep;135(1):231–236. doi: 10.1042/bj1350231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Negin Russell S., Carbeck Jeffrey D. Measurement of electrostatic interactions in protein folding with the use of protein charge ladders. J Am Chem Soc. 2002 Mar 27;124(12):2911–2916. doi: 10.1021/ja0169567. [DOI] [PubMed] [Google Scholar]
  15. Nozaki Y., Reynolds J. A., Tanford C. The interaction of a cationic detergent with bovine serum albumin and other proteins. J Biol Chem. 1974 Jul 25;249(14):4452–4459. [PubMed] [Google Scholar]
  16. O'Neil J. D., Sykes B. D. NMR studies of the influence of dodecyl sulfate on the amide hydrogen exchange kinetics of a micelle-solubilized hydrophobic tripeptide. Biochemistry. 1989 Jan 24;28(2):699–707. doi: 10.1021/bi00428a043. [DOI] [PubMed] [Google Scholar]
  17. Oliveberg M., Fersht A. R. Formation of electrostatic interactions on the protein-folding pathway. Biochemistry. 1996 Feb 27;35(8):2726–2737. doi: 10.1021/bi9509661. [DOI] [PubMed] [Google Scholar]
  18. Oliveberg M., Tan Y. J., Fersht A. R. Negative activation enthalpies in the kinetics of protein folding. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8926–8929. doi: 10.1073/pnas.92.19.8926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Oliveberg M., Vuilleumier S., Fersht A. R. Thermodynamic study of the acid denaturation of barnase and its dependence on ionic strength: evidence for residual electrostatic interactions in the acid/thermally denatured state. Biochemistry. 1994 Jul 26;33(29):8826–8832. doi: 10.1021/bi00195a026. [DOI] [PubMed] [Google Scholar]
  20. Otzen D. E., Christiansen L., Schülein M. A comparative study of the unfolding of the endoglucanase Cel45 from Humicola insolens in denaturant and surfactant. Protein Sci. 1999 Sep;8(9):1878–1887. doi: 10.1110/ps.8.9.1878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Otzen D. E., Kristensen O., Proctor M., Oliveberg M. Structural changes in the transition state of protein folding: alternative interpretations of curved chevron plots. Biochemistry. 1999 May 18;38(20):6499–6511. doi: 10.1021/bi982819j. [DOI] [PubMed] [Google Scholar]
  22. Otzen Daniel E., Oliveberg Mikael. Burst-phase expansion of native protein prior to global unfolding in SDS. J Mol Biol. 2002 Feb 1;315(5):1231–1240. doi: 10.1006/jmbi.2001.5300. [DOI] [PubMed] [Google Scholar]
  23. Otzen Daniel E., Oliveberg Mikael. Conformational plasticity in folding of the split beta-alpha-beta protein S6: evidence for burst-phase disruption of the native state. J Mol Biol. 2002 Apr 5;317(4):613–627. doi: 10.1006/jmbi.2002.5423. [DOI] [PubMed] [Google Scholar]
  24. Reynolds J. A., Herbert S., Polet H., Steinhardt J. The binding of divers detergent anions to bovine serum albumin. Biochemistry. 1967 Mar;6(3):937–947. doi: 10.1021/bi00855a038. [DOI] [PubMed] [Google Scholar]
  25. Reynolds J. A., Tanford C. The gross conformation of protein-sodium dodecyl sulfate complexes. J Biol Chem. 1970 Oct 10;245(19):5161–5165. [PubMed] [Google Scholar]
  26. Timasheff S. N. Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated. Adv Protein Chem. 1998;51:355–432. doi: 10.1016/s0065-3233(08)60656-7. [DOI] [PubMed] [Google Scholar]
  27. Timasheff S. N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct. 1993;22:67–97. doi: 10.1146/annurev.bb.22.060193.000435. [DOI] [PubMed] [Google Scholar]
  28. Wang G., Treleaven W. D., Cushley R. J. Conformation of human serum apolipoprotein A-I(166-185) in the presence of sodium dodecyl sulfate or dodecylphosphocholine by 1H-NMR and CD. Evidence for specific peptide-SDS interactions. Biochim Biophys Acta. 1996 Jun 11;1301(3):174–184. doi: 10.1016/0005-2760(96)00037-9. [DOI] [PubMed] [Google Scholar]
  29. Wimley W. C., White S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol. 1996 Oct;3(10):842–848. doi: 10.1038/nsb1096-842. [DOI] [PubMed] [Google Scholar]
  30. Yonath A., Podjarny A., Honig B., Sielecki A., Traub W. Crystallographic studies of protein denaturation and renaturation. 2. Sodium dodecyl sulfate induced structural changes in triclinic lysozyme. Biochemistry. 1977 Apr 5;16(7):1418–1424. doi: 10.1021/bi00626a028. [DOI] [PubMed] [Google Scholar]
  31. van der Goot F. G., González-Mañas J. M., Lakey J. H., Pattus F. A 'molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A. Nature. 1991 Dec 5;354(6352):408–410. doi: 10.1038/354408a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES