Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Oct;83(4):2280–2291. doi: 10.1016/s0006-3495(02)73988-x

Calcium-dependent conformational rearrangements and protein stability in chicken annexin A5.

Javier Turnay 1, Nieves Olmo 1, María Gasset 1, Ibón Iloro 1, José Luis R Arrondo 1, M Antonia Lizarbe 1
PMCID: PMC1302316  PMID: 12324445

Abstract

The conformational rearrangements that take place after calcium binding in chicken annexin A5 and a mutant lacking residues 3-10 were analyzed, in parallel with human annexin A5, by circular dichroism (CD), infrared spectroscopy (IR), and differential scanning calorimetry. Human and chicken annexins present a slightly different shape in the far-UV CD and IR spectra, but the main secondary-structure features are quite similar (70-80% alpha-helix). However, thermal stability of human annexin is significantly lower than its chicken counterpart (approximately 8 degrees C) and equivalent to the chicken N-terminally truncated form. The N-terminal extension contributes greatly to stabilize the overall annexin A5 structure. Infrared spectroscopy reveals the presence of two populations of alpha-helical structures, the canonical alpha-helices (approximately 1650 cm(-1)) and another, at a lower wavenumber (approximately 1634 cm(-1)), probably arising from helix-helix interactions or solvated alpha-helices. Saturation with calcium induces: alterations in the environment of the unique tryptophan residue of the recombinant proteins, as detected by near-UV CD spectroscopy; more compact tertiary structures that could account for the higher thermal stabilities (8 to 12 degrees C), this effect being higher for human annexin; and an increase in canonical alpha-helix percentage by a rearrangement of nonperiodical structure or 3(10) helices together with a variation in helix-helix interactions, as shown by amide I curve-fitting and 2D-IR.

Full Text

The Full Text of this article is available as a PDF (240.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arboledas D., Olmo N., Lizarbe M. A., Turnay J. Role of the N-terminus in the structure and stability of chicken annexin V. FEBS Lett. 1997 Oct 20;416(2):217–220. doi: 10.1016/s0014-5793(97)01207-6. [DOI] [PubMed] [Google Scholar]
  2. Arrondo J. L., Goñi F. M. Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol. 1999;72(4):367–405. doi: 10.1016/s0079-6107(99)00007-3. [DOI] [PubMed] [Google Scholar]
  3. Arrondo J. L., Muga A., Castresana J., Goñi F. M. Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog Biophys Mol Biol. 1993;59(1):23–56. doi: 10.1016/0079-6107(93)90006-6. [DOI] [PubMed] [Google Scholar]
  4. Berendes R., Burger A., Voges D., Demange P., Huber R. Calcium influx through annexin V ion channels into large unilamellar vesicles measured with fura-2. FEBS Lett. 1993 Feb 8;317(1-2):131–134. doi: 10.1016/0014-5793(93)81507-v. [DOI] [PubMed] [Google Scholar]
  5. Bewley M. C., Boustead C. M., Walker J. H., Waller D. A., Huber R. Structure of chicken annexin V at 2.25-A resolution. Biochemistry. 1993 Apr 20;32(15):3923–3929. doi: 10.1021/bi00066a011. [DOI] [PubMed] [Google Scholar]
  6. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  7. Böhm B. B., Wilbrink B., Kuettner K. E., Mollenhauer J. Structural and functional comparison of anchorin CII (cartilage annexin V) and muscle annexin V. Arch Biochem Biophys. 1994 Oct;314(1):64–74. doi: 10.1006/abbi.1994.1412. [DOI] [PubMed] [Google Scholar]
  8. Concha N. O., Head J. F., Kaetzel M. A., Dedman J. R., Seaton B. A. Rat annexin V crystal structure: Ca(2+)-induced conformational changes. Science. 1993 Sep 3;261(5126):1321–1324. doi: 10.1126/science.8362244. [DOI] [PubMed] [Google Scholar]
  9. Contreras L. M., Aranda F. J., Gavilanes F., González-Ros J. M., Villalaín J. Structure and interaction with membrane model systems of a peptide derived from the major epitope region of HIV protein gp41: implications on viral fusion mechanism. Biochemistry. 2001 Mar 13;40(10):3196–3207. doi: 10.1021/bi002613u. [DOI] [PubMed] [Google Scholar]
  10. Echabe I., Dornberger U., Prado A., Goñi F. M., Arrondo J. L. Topology of sarcoplasmic reticulum Ca2+-ATPase: an infrared study of thermal denaturation and limited proteolysis. Protein Sci. 1998 May;7(5):1172–1179. doi: 10.1002/pro.5560070511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Follenius-Wund A., Piémont E., Freyssinet J. M., Gérard D., Pigault C. Conformational adaptation of annexin V upon binding to liposomes: a time-resolved fluorescence study. Biochem Biophys Res Commun. 1997 May 8;234(1):111–116. doi: 10.1006/bbrc.1997.6596. [DOI] [PubMed] [Google Scholar]
  12. Gerke Volker, Moss Stephen E. Annexins: from structure to function. Physiol Rev. 2002 Apr;82(2):331–371. doi: 10.1152/physrev.00030.2001. [DOI] [PubMed] [Google Scholar]
  13. Gilmanshin R., Williams S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: relaxation dynamics and structure of the I form of apomyoglobin. Biochemistry. 1997 Dec 2;36(48):15006–15012. doi: 10.1021/bi970634r. [DOI] [PubMed] [Google Scholar]
  14. Hofmann A., Benz J., Liemann S., Huber R. Voltage dependent binding of annexin V, annexin VI and annexin VII-core to acidic phospholipid membranes. Biochim Biophys Acta. 1997 Dec 4;1330(2):254–264. doi: 10.1016/s0005-2736(97)00150-8. [DOI] [PubMed] [Google Scholar]
  15. Huber R., Berendes R., Burger A., Schneider M., Karshikov A., Luecke H., Römisch J., Paques E. Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family of proteins. J Mol Biol. 1992 Feb 5;223(3):683–704. doi: 10.1016/0022-2836(92)90984-r. [DOI] [PubMed] [Google Scholar]
  16. Huber R., Schneider M., Mayr I., Römisch J., Paques E. P. The calcium binding sites in human annexin V by crystal structure analysis at 2.0 A resolution. Implications for membrane binding and calcium channel activity. FEBS Lett. 1990 Nov 26;275(1-2):15–21. doi: 10.1016/0014-5793(90)81428-q. [DOI] [PubMed] [Google Scholar]
  17. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Liemann S., Benz J., Burger A., Voges D., Hofmann A., Huber R., Göttig P. Structural and functional characterisation of the voltage sensor in the ion channel human annexin V. J Mol Biol. 1996 May 17;258(4):555–561. doi: 10.1006/jmbi.1996.0268. [DOI] [PubMed] [Google Scholar]
  20. Liemann S., Huber R. Three-dimensional structure of annexins. Cell Mol Life Sci. 1997 Jun;53(6):516–521. doi: 10.1007/s000180050065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lopez Mayorga O., Freire E. Dynamic analysis of differential scanning calorimetry data. Biophys Chem. 1987 Jul;27(1):87–96. doi: 10.1016/0301-4622(87)80049-2. [DOI] [PubMed] [Google Scholar]
  22. Matsuda R., Kaneko N., Horikawa Y. Presence and comparison of Ca2+ transport activity of annexins I, II, V, and VI in large unilamellar vesicles. Biochem Biophys Res Commun. 1997 Aug 28;237(3):499–503. doi: 10.1006/bbrc.1997.7177. [DOI] [PubMed] [Google Scholar]
  23. Meers P. Location of tryptophans in membrane-bound annexins. Biochemistry. 1990 Apr 3;29(13):3325–3330. doi: 10.1021/bi00465a025. [DOI] [PubMed] [Google Scholar]
  24. Meers P., Mealy T. Calcium-dependent annexin V binding to phospholipids: stoichiometry, specificity, and the role of negative charge. Biochemistry. 1993 Nov 2;32(43):11711–11721. doi: 10.1021/bi00094a030. [DOI] [PubMed] [Google Scholar]
  25. Muga A., Mantsch H. H., Surewicz W. K. Membrane binding induces destabilization of cytochrome c structure. Biochemistry. 1991 Jul 23;30(29):7219–7224. doi: 10.1021/bi00243a025. [DOI] [PubMed] [Google Scholar]
  26. Paquet M. J., Laviolette M., Pézolet M., Auger M. Two-dimensional infrared correlation spectroscopy study of the aggregation of cytochrome c in the presence of dimyristoylphosphatidylglycerol. Biophys J. 2001 Jul;81(1):305–312. doi: 10.1016/S0006-3495(01)75700-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Perczel A., Park K., Fasman G. D. Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: a practical guide. Anal Biochem. 1992 May 15;203(1):83–93. doi: 10.1016/0003-2697(92)90046-a. [DOI] [PubMed] [Google Scholar]
  28. Pigault C., Follenius-Wund A., Chabbert M. Role of Trp-187 in the annexin V-membrane interaction: a molecular mechanics analysis. Biochem Biophys Res Commun. 1999 Jan 19;254(2):484–489. doi: 10.1006/bbrc.1998.9965. [DOI] [PubMed] [Google Scholar]
  29. Rand J. H. "Annexinopathies"--a new class of diseases. N Engl J Med. 1999 Apr 1;340(13):1035–1036. doi: 10.1056/NEJM199904013401310. [DOI] [PubMed] [Google Scholar]
  30. Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994 Apr 5;1197(1):63–93. doi: 10.1016/0304-4157(94)90019-1. [DOI] [PubMed] [Google Scholar]
  31. Reisdorf W. C., Jr, Krimm S. Infrared amide I' band of the coiled coil. Biochemistry. 1996 Feb 6;35(5):1383–1386. doi: 10.1021/bi951589v. [DOI] [PubMed] [Google Scholar]
  32. Rosengarth A., Rösgen J., Hinz H. J., Gerke V. A comparison of the energetics of annexin I and annexin V. J Mol Biol. 1999 May 21;288(5):1013–1025. doi: 10.1006/jmbi.1999.2732. [DOI] [PubMed] [Google Scholar]
  33. Sable C. L., Riches D. W. Cloning and functional activity of a novel truncated form of annexin IV in mouse macrophages. Biochem Biophys Res Commun. 1999 Apr 29;258(1):162–167. doi: 10.1006/bbrc.1999.0544. [DOI] [PubMed] [Google Scholar]
  34. Silvestro L., Axelsen P. H. Fourier transform infrared linked analysis of conformational changes in annexin V upon membrane binding. Biochemistry. 1999 Jan 5;38(1):113–121. doi: 10.1021/bi981289o. [DOI] [PubMed] [Google Scholar]
  35. Sopkova-De Oliveira Santos J., Fischer S., Guilbert C., Lewit-Bentley A., Smith J. C. Pathway for large-scale conformational change in annexin V. Biochemistry. 2000 Nov 21;39(46):14065–14074. doi: 10.1021/bi000659h. [DOI] [PubMed] [Google Scholar]
  36. Sopkova-De Oliveira Santos J., Vincent M., Tabaries S., Chevalier A., Kerboeuf D., Russo-Marie F., Lewit-Bentley A., Gallay J. Annexin A5 D226K structure and dynamics: identification of a molecular switch for the large-scale conformational change of domain III. FEBS Lett. 2001 Mar 30;493(2-3):122–128. doi: 10.1016/s0014-5793(01)02285-2. [DOI] [PubMed] [Google Scholar]
  37. Sopkova J., Gallay J., Vincent M., Pancoska P., Lewit-Bentley A. The dynamic behavior of annexin V as a function of calcium ion binding: a circular dichroism, UV absorption, and steady-state and time-resolved fluorescence study. Biochemistry. 1994 Apr 19;33(15):4490–4499. doi: 10.1021/bi00181a008. [DOI] [PubMed] [Google Scholar]
  38. Sopkova J., Renouard M., Lewit-Bentley A. The crystal structure of a new high-calcium form of annexin V. J Mol Biol. 1993 Dec 5;234(3):816–825. doi: 10.1006/jmbi.1993.1627. [DOI] [PubMed] [Google Scholar]
  39. Sopkova J., Vincent M., Takahashi M., Lewit-Bentley A., Gallay J. Conformational flexibility of domain III of annexin V studied by fluorescence of tryptophan 187 and circular dichroism: the effect of pH. Biochemistry. 1998 Aug 25;37(34):11962–11970. doi: 10.1021/bi980773o. [DOI] [PubMed] [Google Scholar]
  40. Swairjo M. A., Seaton B. A. Annexin structure and membrane interactions: a molecular perspective. Annu Rev Biophys Biomol Struct. 1994;23:193–213. doi: 10.1146/annurev.bb.23.060194.001205. [DOI] [PubMed] [Google Scholar]
  41. Sánchez-Ruiz J. M., López-Lacomba J. L., Cortijo M., Mateo P. L. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry. 1988 Mar 8;27(5):1648–1652. doi: 10.1021/bi00405a039. [DOI] [PubMed] [Google Scholar]
  42. Turnay J., Pfannmüller E., Lizarbe M. A., Bertling W. M., von der Mark K. Collagen binding activity of recombinant and N-terminally modified annexin V (anchorin CII). J Cell Biochem. 1995 Jun;58(2):208–220. doi: 10.1002/jcb.240580210. [DOI] [PubMed] [Google Scholar]
  43. Vogl T., Jatzke C., Hinz H. J., Benz J., Huber R. Thermodynamic stability of annexin V E17G: equilibrium parameters from an irreversible unfolding reaction. Biochemistry. 1997 Feb 18;36(7):1657–1668. doi: 10.1021/bi962163z. [DOI] [PubMed] [Google Scholar]
  44. Wu F., Flach C. R., Seaton B. A., Mealy T. R., Mendelsohn R. Stability of annexin V in ternary complexes with Ca2+ and anionic phospholipids: IR studies of monolayer and bulk phases. Biochemistry. 1999 Jan 12;38(2):792–799. doi: 10.1021/bi9819677. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES