Abstract
The conformational rearrangements that take place after calcium binding in chicken annexin A5 and a mutant lacking residues 3-10 were analyzed, in parallel with human annexin A5, by circular dichroism (CD), infrared spectroscopy (IR), and differential scanning calorimetry. Human and chicken annexins present a slightly different shape in the far-UV CD and IR spectra, but the main secondary-structure features are quite similar (70-80% alpha-helix). However, thermal stability of human annexin is significantly lower than its chicken counterpart (approximately 8 degrees C) and equivalent to the chicken N-terminally truncated form. The N-terminal extension contributes greatly to stabilize the overall annexin A5 structure. Infrared spectroscopy reveals the presence of two populations of alpha-helical structures, the canonical alpha-helices (approximately 1650 cm(-1)) and another, at a lower wavenumber (approximately 1634 cm(-1)), probably arising from helix-helix interactions or solvated alpha-helices. Saturation with calcium induces: alterations in the environment of the unique tryptophan residue of the recombinant proteins, as detected by near-UV CD spectroscopy; more compact tertiary structures that could account for the higher thermal stabilities (8 to 12 degrees C), this effect being higher for human annexin; and an increase in canonical alpha-helix percentage by a rearrangement of nonperiodical structure or 3(10) helices together with a variation in helix-helix interactions, as shown by amide I curve-fitting and 2D-IR.
Full Text
The Full Text of this article is available as a PDF (240.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arboledas D., Olmo N., Lizarbe M. A., Turnay J. Role of the N-terminus in the structure and stability of chicken annexin V. FEBS Lett. 1997 Oct 20;416(2):217–220. doi: 10.1016/s0014-5793(97)01207-6. [DOI] [PubMed] [Google Scholar]
- Arrondo J. L., Goñi F. M. Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol. 1999;72(4):367–405. doi: 10.1016/s0079-6107(99)00007-3. [DOI] [PubMed] [Google Scholar]
- Arrondo J. L., Muga A., Castresana J., Goñi F. M. Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog Biophys Mol Biol. 1993;59(1):23–56. doi: 10.1016/0079-6107(93)90006-6. [DOI] [PubMed] [Google Scholar]
- Berendes R., Burger A., Voges D., Demange P., Huber R. Calcium influx through annexin V ion channels into large unilamellar vesicles measured with fura-2. FEBS Lett. 1993 Feb 8;317(1-2):131–134. doi: 10.1016/0014-5793(93)81507-v. [DOI] [PubMed] [Google Scholar]
- Bewley M. C., Boustead C. M., Walker J. H., Waller D. A., Huber R. Structure of chicken annexin V at 2.25-A resolution. Biochemistry. 1993 Apr 20;32(15):3923–3929. doi: 10.1021/bi00066a011. [DOI] [PubMed] [Google Scholar]
- Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
- Böhm B. B., Wilbrink B., Kuettner K. E., Mollenhauer J. Structural and functional comparison of anchorin CII (cartilage annexin V) and muscle annexin V. Arch Biochem Biophys. 1994 Oct;314(1):64–74. doi: 10.1006/abbi.1994.1412. [DOI] [PubMed] [Google Scholar]
- Concha N. O., Head J. F., Kaetzel M. A., Dedman J. R., Seaton B. A. Rat annexin V crystal structure: Ca(2+)-induced conformational changes. Science. 1993 Sep 3;261(5126):1321–1324. doi: 10.1126/science.8362244. [DOI] [PubMed] [Google Scholar]
- Contreras L. M., Aranda F. J., Gavilanes F., González-Ros J. M., Villalaín J. Structure and interaction with membrane model systems of a peptide derived from the major epitope region of HIV protein gp41: implications on viral fusion mechanism. Biochemistry. 2001 Mar 13;40(10):3196–3207. doi: 10.1021/bi002613u. [DOI] [PubMed] [Google Scholar]
- Echabe I., Dornberger U., Prado A., Goñi F. M., Arrondo J. L. Topology of sarcoplasmic reticulum Ca2+-ATPase: an infrared study of thermal denaturation and limited proteolysis. Protein Sci. 1998 May;7(5):1172–1179. doi: 10.1002/pro.5560070511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Follenius-Wund A., Piémont E., Freyssinet J. M., Gérard D., Pigault C. Conformational adaptation of annexin V upon binding to liposomes: a time-resolved fluorescence study. Biochem Biophys Res Commun. 1997 May 8;234(1):111–116. doi: 10.1006/bbrc.1997.6596. [DOI] [PubMed] [Google Scholar]
- Gerke Volker, Moss Stephen E. Annexins: from structure to function. Physiol Rev. 2002 Apr;82(2):331–371. doi: 10.1152/physrev.00030.2001. [DOI] [PubMed] [Google Scholar]
- Gilmanshin R., Williams S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: relaxation dynamics and structure of the I form of apomyoglobin. Biochemistry. 1997 Dec 2;36(48):15006–15012. doi: 10.1021/bi970634r. [DOI] [PubMed] [Google Scholar]
- Hofmann A., Benz J., Liemann S., Huber R. Voltage dependent binding of annexin V, annexin VI and annexin VII-core to acidic phospholipid membranes. Biochim Biophys Acta. 1997 Dec 4;1330(2):254–264. doi: 10.1016/s0005-2736(97)00150-8. [DOI] [PubMed] [Google Scholar]
- Huber R., Berendes R., Burger A., Schneider M., Karshikov A., Luecke H., Römisch J., Paques E. Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family of proteins. J Mol Biol. 1992 Feb 5;223(3):683–704. doi: 10.1016/0022-2836(92)90984-r. [DOI] [PubMed] [Google Scholar]
- Huber R., Schneider M., Mayr I., Römisch J., Paques E. P. The calcium binding sites in human annexin V by crystal structure analysis at 2.0 A resolution. Implications for membrane binding and calcium channel activity. FEBS Lett. 1990 Nov 26;275(1-2):15–21. doi: 10.1016/0014-5793(90)81428-q. [DOI] [PubMed] [Google Scholar]
- Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Liemann S., Benz J., Burger A., Voges D., Hofmann A., Huber R., Göttig P. Structural and functional characterisation of the voltage sensor in the ion channel human annexin V. J Mol Biol. 1996 May 17;258(4):555–561. doi: 10.1006/jmbi.1996.0268. [DOI] [PubMed] [Google Scholar]
- Liemann S., Huber R. Three-dimensional structure of annexins. Cell Mol Life Sci. 1997 Jun;53(6):516–521. doi: 10.1007/s000180050065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lopez Mayorga O., Freire E. Dynamic analysis of differential scanning calorimetry data. Biophys Chem. 1987 Jul;27(1):87–96. doi: 10.1016/0301-4622(87)80049-2. [DOI] [PubMed] [Google Scholar]
- Matsuda R., Kaneko N., Horikawa Y. Presence and comparison of Ca2+ transport activity of annexins I, II, V, and VI in large unilamellar vesicles. Biochem Biophys Res Commun. 1997 Aug 28;237(3):499–503. doi: 10.1006/bbrc.1997.7177. [DOI] [PubMed] [Google Scholar]
- Meers P. Location of tryptophans in membrane-bound annexins. Biochemistry. 1990 Apr 3;29(13):3325–3330. doi: 10.1021/bi00465a025. [DOI] [PubMed] [Google Scholar]
- Meers P., Mealy T. Calcium-dependent annexin V binding to phospholipids: stoichiometry, specificity, and the role of negative charge. Biochemistry. 1993 Nov 2;32(43):11711–11721. doi: 10.1021/bi00094a030. [DOI] [PubMed] [Google Scholar]
- Muga A., Mantsch H. H., Surewicz W. K. Membrane binding induces destabilization of cytochrome c structure. Biochemistry. 1991 Jul 23;30(29):7219–7224. doi: 10.1021/bi00243a025. [DOI] [PubMed] [Google Scholar]
- Paquet M. J., Laviolette M., Pézolet M., Auger M. Two-dimensional infrared correlation spectroscopy study of the aggregation of cytochrome c in the presence of dimyristoylphosphatidylglycerol. Biophys J. 2001 Jul;81(1):305–312. doi: 10.1016/S0006-3495(01)75700-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perczel A., Park K., Fasman G. D. Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: a practical guide. Anal Biochem. 1992 May 15;203(1):83–93. doi: 10.1016/0003-2697(92)90046-a. [DOI] [PubMed] [Google Scholar]
- Pigault C., Follenius-Wund A., Chabbert M. Role of Trp-187 in the annexin V-membrane interaction: a molecular mechanics analysis. Biochem Biophys Res Commun. 1999 Jan 19;254(2):484–489. doi: 10.1006/bbrc.1998.9965. [DOI] [PubMed] [Google Scholar]
- Rand J. H. "Annexinopathies"--a new class of diseases. N Engl J Med. 1999 Apr 1;340(13):1035–1036. doi: 10.1056/NEJM199904013401310. [DOI] [PubMed] [Google Scholar]
- Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994 Apr 5;1197(1):63–93. doi: 10.1016/0304-4157(94)90019-1. [DOI] [PubMed] [Google Scholar]
- Reisdorf W. C., Jr, Krimm S. Infrared amide I' band of the coiled coil. Biochemistry. 1996 Feb 6;35(5):1383–1386. doi: 10.1021/bi951589v. [DOI] [PubMed] [Google Scholar]
- Rosengarth A., Rösgen J., Hinz H. J., Gerke V. A comparison of the energetics of annexin I and annexin V. J Mol Biol. 1999 May 21;288(5):1013–1025. doi: 10.1006/jmbi.1999.2732. [DOI] [PubMed] [Google Scholar]
- Sable C. L., Riches D. W. Cloning and functional activity of a novel truncated form of annexin IV in mouse macrophages. Biochem Biophys Res Commun. 1999 Apr 29;258(1):162–167. doi: 10.1006/bbrc.1999.0544. [DOI] [PubMed] [Google Scholar]
- Silvestro L., Axelsen P. H. Fourier transform infrared linked analysis of conformational changes in annexin V upon membrane binding. Biochemistry. 1999 Jan 5;38(1):113–121. doi: 10.1021/bi981289o. [DOI] [PubMed] [Google Scholar]
- Sopkova-De Oliveira Santos J., Fischer S., Guilbert C., Lewit-Bentley A., Smith J. C. Pathway for large-scale conformational change in annexin V. Biochemistry. 2000 Nov 21;39(46):14065–14074. doi: 10.1021/bi000659h. [DOI] [PubMed] [Google Scholar]
- Sopkova-De Oliveira Santos J., Vincent M., Tabaries S., Chevalier A., Kerboeuf D., Russo-Marie F., Lewit-Bentley A., Gallay J. Annexin A5 D226K structure and dynamics: identification of a molecular switch for the large-scale conformational change of domain III. FEBS Lett. 2001 Mar 30;493(2-3):122–128. doi: 10.1016/s0014-5793(01)02285-2. [DOI] [PubMed] [Google Scholar]
- Sopkova J., Gallay J., Vincent M., Pancoska P., Lewit-Bentley A. The dynamic behavior of annexin V as a function of calcium ion binding: a circular dichroism, UV absorption, and steady-state and time-resolved fluorescence study. Biochemistry. 1994 Apr 19;33(15):4490–4499. doi: 10.1021/bi00181a008. [DOI] [PubMed] [Google Scholar]
- Sopkova J., Renouard M., Lewit-Bentley A. The crystal structure of a new high-calcium form of annexin V. J Mol Biol. 1993 Dec 5;234(3):816–825. doi: 10.1006/jmbi.1993.1627. [DOI] [PubMed] [Google Scholar]
- Sopkova J., Vincent M., Takahashi M., Lewit-Bentley A., Gallay J. Conformational flexibility of domain III of annexin V studied by fluorescence of tryptophan 187 and circular dichroism: the effect of pH. Biochemistry. 1998 Aug 25;37(34):11962–11970. doi: 10.1021/bi980773o. [DOI] [PubMed] [Google Scholar]
- Swairjo M. A., Seaton B. A. Annexin structure and membrane interactions: a molecular perspective. Annu Rev Biophys Biomol Struct. 1994;23:193–213. doi: 10.1146/annurev.bb.23.060194.001205. [DOI] [PubMed] [Google Scholar]
- Sánchez-Ruiz J. M., López-Lacomba J. L., Cortijo M., Mateo P. L. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry. 1988 Mar 8;27(5):1648–1652. doi: 10.1021/bi00405a039. [DOI] [PubMed] [Google Scholar]
- Turnay J., Pfannmüller E., Lizarbe M. A., Bertling W. M., von der Mark K. Collagen binding activity of recombinant and N-terminally modified annexin V (anchorin CII). J Cell Biochem. 1995 Jun;58(2):208–220. doi: 10.1002/jcb.240580210. [DOI] [PubMed] [Google Scholar]
- Vogl T., Jatzke C., Hinz H. J., Benz J., Huber R. Thermodynamic stability of annexin V E17G: equilibrium parameters from an irreversible unfolding reaction. Biochemistry. 1997 Feb 18;36(7):1657–1668. doi: 10.1021/bi962163z. [DOI] [PubMed] [Google Scholar]
- Wu F., Flach C. R., Seaton B. A., Mealy T. R., Mendelsohn R. Stability of annexin V in ternary complexes with Ca2+ and anionic phospholipids: IR studies of monolayer and bulk phases. Biochemistry. 1999 Jan 12;38(2):792–799. doi: 10.1021/bi9819677. [DOI] [PubMed] [Google Scholar]