Abstract
High-affinity and cooperative binding of two Ca(2+) per ATPase (SERCA) occurs within the membrane-bound region of the enzyme. Direct measurements of binding at various Ca(2+) concentrations demonstrate that site-directed mutations within this region interfere selectively with Ca(2+) occupancy of either one or both binding sites and with the cooperative character of the binding isotherms. A transition associated with high affinity and cooperative binding of the second Ca(2+) and the engagement of N796 and E309 are both required to form a phosphoenzyme intermediate with ATP in the forward direction of the cycle and also to form ATP from phosphoenzyme intermediate and ADP in the reverse direction of the cycle. This transition, defined by equilibrium and kinetic characterization of the partial reactions of the enzyme cycle, extends from transmembrane helices to the catalytic site through a long-range linkage and is the mechanistic device for interconversion of binding and phosphorylation potentials.
Full Text
The Full Text of this article is available as a PDF (379.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen J. P., Vilsen B. Functional consequences of alterations to Glu309, Glu771, and Asp800 in the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1992 Sep 25;267(27):19383–19387. [PubMed] [Google Scholar]
- Bigelow D. J., Inesi G. Contributions of chemical derivatization and spectroscopic studies to the characterization of the Ca2+ transport ATPase of sarcoplasmic reticulum. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):323–338. doi: 10.1016/0304-4157(92)90005-u. [DOI] [PubMed] [Google Scholar]
- Clarke D. M., Loo T. W., Inesi G., MacLennan D. H. Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature. 1989 Jun 8;339(6224):476–478. doi: 10.1038/339476a0. [DOI] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol. 1978 Mar;276:233–255. doi: 10.1113/jphysiol.1978.sp012231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grisham C. M., Mildvan A. S. Magnetic resonance and kinetic studies of the mechanism of sodium and potassium ion-activated adenosine triphosphatase. J Biol Chem. 1974 May 25;249(10):3187–3197. [PubMed] [Google Scholar]
- HASSELBACH W., MAKINOSE M. [The calcium pump of the "relaxing granules" of muscle and its dependence on ATP-splitting]. Biochem Z. 1961;333:518–528. [PubMed] [Google Scholar]
- Inesi G., Kurzmack M., Coan C., Lewis D. E. Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles. J Biol Chem. 1980 Apr 10;255(7):3025–3031. [PubMed] [Google Scholar]
- Inesi G., Kurzmack M., Lewis D. Kinetic and equilibrium characterization of an energy-transducing enzyme and its partial reactions. Methods Enzymol. 1988;157:154–190. doi: 10.1016/0076-6879(88)57074-x. [DOI] [PubMed] [Google Scholar]
- Inesi G., Lewis D., Nikic D., Hussain A., Kirtley M. E. Long-range intramolecular linked functions in the calcium transport ATPase. Adv Enzymol Relat Areas Mol Biol. 1992;65:185–215. doi: 10.1002/9780470123119.ch5. [DOI] [PubMed] [Google Scholar]
- Kanazawa T., Boyer P. D. Occurrence and characteristics of a rapid exchange of phosphate oxygens catalyzed by sarcoplasmic reticulum vesicles. J Biol Chem. 1973 May 10;248(9):3163–3172. doi: 10.2172/4473783. [DOI] [PubMed] [Google Scholar]
- Knowles A. F., Racker E. Formation of adenosine triphosphate from Pi and adenosine diphosphate by purified Ca-2+-adenosine triphosphatase. J Biol Chem. 1975 Mar 10;250(5):1949–1951. [PubMed] [Google Scholar]
- MacLennan D. H., Brandl C. J., Korczak B., Green N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature. 1985 Aug 22;316(6030):696–700. doi: 10.1038/316696a0. [DOI] [PubMed] [Google Scholar]
- Makinose M., Hasselbach W. ATP synthesis by the reverse of the sarcoplasmic calcium pump. FEBS Lett. 1971 Jan 30;12(5):271–272. doi: 10.1016/0014-5793(71)80196-5. [DOI] [PubMed] [Google Scholar]
- Masuda H., de Meis L. Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate. Inhibition by calcium ions. Biochemistry. 1973 Nov 6;12(23):4581–4585. doi: 10.1021/bi00747a006. [DOI] [PubMed] [Google Scholar]
- Mitchell P., Koppenol W. H. Chemiosmotic ATPase mechanisms. Ann N Y Acad Sci. 1982;402:584–601. doi: 10.1111/j.1749-6632.1982.tb25785.x. [DOI] [PubMed] [Google Scholar]
- Skerjanc I. S., Toyofuku T., Richardson C., MacLennan D. H. Mutation of glutamate 309 to glutamine alters one Ca(2+)-binding site in the Ca(2+)-ATPase of sarcoplasmic reticulum expressed in Sf9 cells. J Biol Chem. 1993 Jul 25;268(21):15944–15950. [PubMed] [Google Scholar]
- Sorensen T. L., Andersen J. P. Importance of stalk segment S5 for intramolecular communication in the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem. 2000 Sep 15;275(37):28954–28961. doi: 10.1074/jbc.M004072200. [DOI] [PubMed] [Google Scholar]
- Strehler E. E., James P., Fischer R., Heim R., Vorherr T., Filoteo A. G., Penniston J. T., Carafoli E. Peptide sequence analysis and molecular cloning reveal two calcium pump isoforms in the human erythrocyte membrane. J Biol Chem. 1990 Feb 15;265(5):2835–2842. [PubMed] [Google Scholar]
- Tada M., Yamamoto T., Tonomura Y. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol Rev. 1978 Jan;58(1):1–79. doi: 10.1152/physrev.1978.58.1.1. [DOI] [PubMed] [Google Scholar]
- Taussig R., Gilman A. G. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995 Jan 6;270(1):1–4. doi: 10.1074/jbc.270.1.1. [DOI] [PubMed] [Google Scholar]
- Toyoshima C., Nakasako M., Nomura H., Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature. 2000 Jun 8;405(6787):647–655. doi: 10.1038/35015017. [DOI] [PubMed] [Google Scholar]
- Toyoshima C., Sasabe H., Stokes D. L. Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature. 1993 Apr 1;362(6419):467–471. doi: 10.1038/362469a0. [DOI] [PubMed] [Google Scholar]
- Toyoshima Chikashi, Nomura Hiromi. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature. 2002 Aug 8;418(6898):605–611. doi: 10.1038/nature00944. [DOI] [PubMed] [Google Scholar]
- Vilsen B., Andersen J. P. Mutational analysis of the role of Glu309 in the sarcoplasmic reticulum Ca(2+)-ATPase of frog skeletal muscle. FEBS Lett. 1992 Jul 20;306(2-3):247–250. doi: 10.1016/0014-5793(92)81010-j. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Xu Chen, Rice William J., He Wanzhong, Stokes David L. A structural model for the catalytic cycle of Ca(2+)-ATPase. J Mol Biol. 2002 Feb 8;316(1):201–211. doi: 10.1006/jmbi.2001.5330. [DOI] [PubMed] [Google Scholar]
- Zhang Z., Lewis D., Strock C., Inesi G., Nakasako M., Nomura H., Toyoshima C. Detailed characterization of the cooperative mechanism of Ca(2+) binding and catalytic activation in the Ca(2+) transport (SERCA) ATPase. Biochemistry. 2000 Aug 1;39(30):8758–8767. doi: 10.1021/bi000185m. [DOI] [PubMed] [Google Scholar]
- Zhang Z., Lewis D., Sumbilla C., Inesi G., Toyoshima C. The role of the M6-M7 loop (L67) in stabilization of the phosphorylation and Ca(2+) binding domains of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA). J Biol Chem. 2001 Feb 5;276(18):15232–15239. doi: 10.1074/jbc.M010813200. [DOI] [PubMed] [Google Scholar]
- de Meis L., Inesi G. ATP synthesis by sarcoplasmic reticulum ATPase following Ca2+, PH, temperature, and water activity jumps. J Biol Chem. 1982 Feb 10;257(3):1289–1294. [PubMed] [Google Scholar]
- de Meis L., Tume R. K. A new mechanism by which an H+ concentration gradient drives the synthesis of adenosine triphosphate, pH jump, and adenosine triphosphate synthesis by the Ca2+-dependnet adenosine triphosphatase of sarcoplasmic reticulum. Biochemistry. 1977 Oct 4;16(20):4455–4463. doi: 10.1021/bi00639a020. [DOI] [PubMed] [Google Scholar]
- de Meis L., Vianna A. L. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem. 1979;48:275–292. doi: 10.1146/annurev.bi.48.070179.001423. [DOI] [PubMed] [Google Scholar]