Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2349–2359. doi: 10.1016/S0006-3495(02)75249-1

A reduced model clarifies the role of feedback loops and time delays in the Drosophila circadian oscillator.

Paul Smolen 1, Douglas A Baxter 1, John H Byrne 1
PMCID: PMC1302324  PMID: 12414672

Abstract

Although several detailed models of molecular processes essential for circadian oscillations have been developed, their complexity makes intuitive understanding of the oscillation mechanism difficult. The goal of the present study was to reduce a previously developed, detailed model to a minimal representation of the transcriptional regulation essential for circadian rhythmicity in Drosophila. The reduced model contains only two differential equations, each with time delays. A negative feedback loop is included, in which PER protein represses per transcription by binding the dCLOCK transcription factor. A positive feedback loop is also included, in which dCLOCK indirectly enhances its own formation. The model simulated circadian oscillations, light entrainment, and a phase-response curve with qualitative similarities to experiment. Time delays were found to be essential for simulation of circadian oscillations with this model. To examine the robustness of the simplified model to fluctuations in molecule numbers, a stochastic variant was constructed. Robust circadian oscillations and entrainment to light pulses were simulated with fewer than 80 molecules of each gene product present on average. Circadian oscillations persisted when the positive feedback loop was removed. Moreover, elimination of positive feedback did not decrease the robustness of oscillations to stochastic fluctuations or to variations in parameter values. Such reduced models can aid understanding of the oscillation mechanisms in Drosophila and in other organisms in which feedback regulation of transcription may play an important role.

Full Text

The Full Text of this article is available as a PDF (320.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bae K., Lee C., Hardin P. E., Edery I. dCLOCK is present in limiting amounts and likely mediates daily interactions between the dCLOCK-CYC transcription factor and the PER-TIM complex. J Neurosci. 2000 Mar 1;20(5):1746–1753. doi: 10.1523/JNEUROSCI.20-05-01746.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bae K., Lee C., Sidote D., Chuang K. Y., Edery I. Circadian regulation of a Drosophila homolog of the mammalian Clock gene: PER and TIM function as positive regulators. Mol Cell Biol. 1998 Oct;18(10):6142–6151. doi: 10.1128/mcb.18.10.6142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bao S., Rihel J., Bjes E., Fan J. Y., Price J. L. The Drosophila double-timeS mutation delays the nuclear accumulation of period protein and affects the feedback regulation of period mRNA. J Neurosci. 2001 Sep 15;21(18):7117–7126. doi: 10.1523/JNEUROSCI.21-18-07117.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barkai N., Leibler S. Circadian clocks limited by noise. Nature. 2000 Jan 20;403(6767):267–268. doi: 10.1038/35002258. [DOI] [PubMed] [Google Scholar]
  5. Berg O. G., Paulsson J., Ehrenberg M. Fluctuations and quality of control in biological cells: zero-order ultrasensitivity reinvestigated. Biophys J. 2000 Sep;79(3):1228–1236. doi: 10.1016/S0006-3495(00)76377-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blau J., Young M. W. Cycling vrille expression is required for a functional Drosophila clock. Cell. 1999 Dec 10;99(6):661–671. doi: 10.1016/s0092-8674(00)81554-8. [DOI] [PubMed] [Google Scholar]
  7. Cheng P., Yang Y., Liu Y. Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7408–7413. doi: 10.1073/pnas.121170298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crosthwaite S. K., Dunlap J. C., Loros J. J. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science. 1997 May 2;276(5313):763–769. doi: 10.1126/science.276.5313.763. [DOI] [PubMed] [Google Scholar]
  9. Darlington T. K., Wager-Smith K., Ceriani M. F., Staknis D., Gekakis N., Steeves T. D., Weitz C. J., Takahashi J. S., Kay S. A. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science. 1998 Jun 5;280(5369):1599–1603. doi: 10.1126/science.280.5369.1599. [DOI] [PubMed] [Google Scholar]
  10. Edery I., Zwiebel L. J., Dembinska M. E., Rosbash M. Temporal phosphorylation of the Drosophila period protein. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2260–2264. doi: 10.1073/pnas.91.6.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ewer J., Frisch B., Hamblen-Coyle M. J., Rosbash M., Hall J. C. Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells' influence on circadian behavioral rhythms. J Neurosci. 1992 Sep;12(9):3321–3349. doi: 10.1523/JNEUROSCI.12-09-03321.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glossop N. R., Lyons L. C., Hardin P. E. Interlocked feedback loops within the Drosophila circadian oscillator. Science. 1999 Oct 22;286(5440):766–768. doi: 10.1126/science.286.5440.766. [DOI] [PubMed] [Google Scholar]
  13. Goldbeter A. A model for circadian oscillations in the Drosophila period protein (PER). Proc Biol Sci. 1995 Sep 22;261(1362):319–324. doi: 10.1098/rspb.1995.0153. [DOI] [PubMed] [Google Scholar]
  14. Gonze D., Leloup J. C., Goldbeter A. Theoretical models for circadian rhythms in Neurospora and Drosophila. C R Acad Sci III. 2000 Jan;323(1):57–67. doi: 10.1016/s0764-4469(00)00111-6. [DOI] [PubMed] [Google Scholar]
  15. Griffith J. S. Mathematics of cellular control processes. I. Negative feedback to one gene. J Theor Biol. 1968 Aug;20(2):202–208. doi: 10.1016/0022-5193(68)90189-6. [DOI] [PubMed] [Google Scholar]
  16. Hastings M. H. Circadian clockwork: two loops are better than one. Nat Rev Neurosci. 2000 Nov;1(2):143–146. doi: 10.1038/35039080. [DOI] [PubMed] [Google Scholar]
  17. Iwasaki H., Dunlap J. C. Microbial circadian oscillatory systems in Neurospora and Synechococcus: models for cellular clocks. Curr Opin Microbiol. 2000 Apr;3(2):189–196. doi: 10.1016/s1369-5274(00)00074-6. [DOI] [PubMed] [Google Scholar]
  18. Keller A. D. Model genetic circuits encoding autoregulatory transcription factors. J Theor Biol. 1995 Jan 21;172(2):169–185. doi: 10.1006/jtbi.1995.0014. [DOI] [PubMed] [Google Scholar]
  19. Kim Eun Young, Bae Kiho, Ng Fanny S., Glossop Nick R. J., Hardin Paul E., Edery Isaac. Drosophila CLOCK protein is under posttranscriptional control and influences light-induced activity. Neuron. 2002 Mar 28;34(1):69–81. doi: 10.1016/s0896-6273(02)00639-6. [DOI] [PubMed] [Google Scholar]
  20. Kloss B., Rothenfluh A., Young M. W., Saez L. Phosphorylation of period is influenced by cycling physical associations of double-time, period, and timeless in the Drosophila clock. Neuron. 2001 Jun;30(3):699–706. doi: 10.1016/s0896-6273(01)00320-8. [DOI] [PubMed] [Google Scholar]
  21. Konopka R. J., Smith R. F., Orr D. Characterization of Andante, a new Drosophila clock mutant, and its interactions with other clock mutants. J Neurogenet. 1991 Feb;7(2-3):103–114. doi: 10.3109/01677069109066214. [DOI] [PubMed] [Google Scholar]
  22. Lee C., Bae K., Edery I. PER and TIM inhibit the DNA binding activity of a Drosophila CLOCK-CYC/dBMAL1 heterodimer without disrupting formation of the heterodimer: a basis for circadian transcription. Mol Cell Biol. 1999 Aug;19(8):5316–5325. doi: 10.1128/mcb.19.8.5316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lee C., Bae K., Edery I. The Drosophila CLOCK protein undergoes daily rhythms in abundance, phosphorylation, and interactions with the PER-TIM complex. Neuron. 1998 Oct;21(4):857–867. doi: 10.1016/s0896-6273(00)80601-7. [DOI] [PubMed] [Google Scholar]
  24. Leloup J. C., Goldbeter A. A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J Biol Rhythms. 1998 Feb;13(1):70–87. doi: 10.1177/074873098128999934. [DOI] [PubMed] [Google Scholar]
  25. Lema M. A., Golombek D. A., Echave J. Delay model of the circadian pacemaker. J Theor Biol. 2000 Jun 21;204(4):565–573. doi: 10.1006/jtbi.2000.2038. [DOI] [PubMed] [Google Scholar]
  26. Mackey MC, Nechaeva IG. Solution moment stability in stochastic differential delay equations. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Oct;52(4):3366–3376. doi: 10.1103/physreve.52.3366. [DOI] [PubMed] [Google Scholar]
  27. Marrus S. B., Zeng H., Rosbash M. Effect of constant light and circadian entrainment of perS flies: evidence for light-mediated delay of the negative feedback loop in Drosophila. EMBO J. 1996 Dec 16;15(24):6877–6886. [PMC free article] [PubMed] [Google Scholar]
  28. Matsumoto A., Motoshige T., Murata T., Tomioka K., Tanimura T., Chiba Y. Chronobiological analysis of a new clock mutant, Toki, in Drosophila melanogaster. J Neurogenet. 1994 Jul;9(3):141–155. doi: 10.3109/01677069409167276. [DOI] [PubMed] [Google Scholar]
  29. McDonald M. J., Rosbash M. Microarray analysis and organization of circadian gene expression in Drosophila. Cell. 2001 Nov 30;107(5):567–578. doi: 10.1016/s0092-8674(01)00545-1. [DOI] [PubMed] [Google Scholar]
  30. Myers M. P., Wager-Smith K., Rothenfluh-Hilfiker A., Young M. W. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science. 1996 Mar 22;271(5256):1736–1740. doi: 10.1126/science.271.5256.1736. [DOI] [PubMed] [Google Scholar]
  31. Ohira T, Yamane T. Delayed stochastic systems. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Feb;61(2):1247–1257. doi: 10.1103/physreve.61.1247. [DOI] [PubMed] [Google Scholar]
  32. Paulsson J., Berg O. G., Ehrenberg M. Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7148–7153. doi: 10.1073/pnas.110057697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Price J. L., Blau J., Rothenfluh A., Abodeely M., Kloss B., Young M. W. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell. 1998 Jul 10;94(1):83–95. doi: 10.1016/s0092-8674(00)81224-6. [DOI] [PubMed] [Google Scholar]
  34. Ruoff P., Vinsjevik M., Monnerjahn C., Rensing L. The Goodwin oscillator: on the importance of degradation reactions in the circadian clock. J Biol Rhythms. 1999 Dec;14(6):469–479. doi: 10.1177/074873099129001037. [DOI] [PubMed] [Google Scholar]
  35. Scheper T., Klinkenberg D., Pennartz C., van Pelt J. A mathematical model for the intracellular circadian rhythm generator. J Neurosci. 1999 Jan 1;19(1):40–47. doi: 10.1523/JNEUROSCI.19-01-00040.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shearman L. P., Sriram S., Weaver D. R., Maywood E. S., Chaves I., Zheng B., Kume K., Lee C. C., van der Horst G. T., Hastings M. H. Interacting molecular loops in the mammalian circadian clock. Science. 2000 May 12;288(5468):1013–1019. doi: 10.1126/science.288.5468.1013. [DOI] [PubMed] [Google Scholar]
  37. Smolen P., Baxter D. A., Byrne J. H. Mathematical modeling of gene networks. Neuron. 2000 Jun;26(3):567–580. doi: 10.1016/s0896-6273(00)81194-0. [DOI] [PubMed] [Google Scholar]
  38. Smolen P., Baxter D. A., Byrne J. H. Modeling circadian oscillations with interlocking positive and negative feedback loops. J Neurosci. 2001 Sep 1;21(17):6644–6656. doi: 10.1523/JNEUROSCI.21-17-06644.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. So W. V., Rosbash M. Post-transcriptional regulation contributes to Drosophila clock gene mRNA cycling. EMBO J. 1997 Dec 1;16(23):7146–7155. doi: 10.1093/emboj/16.23.7146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tyson J. J., Hong C. I., Thron C. D., Novak B. A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. Biophys J. 2008 Nov 21;77(5):2411–2417. doi: 10.1016/S0006-3495(99)77078-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vosshall L. B., Price J. L., Sehgal A., Saez L., Young M. W. Block in nuclear localization of period protein by a second clock mutation, timeless. Science. 1994 Mar 18;263(5153):1606–1609. doi: 10.1126/science.8128247. [DOI] [PubMed] [Google Scholar]
  42. Winfree A. T. On the photosensitivity of the circadian time-sense in Drosophilia pseudoobscura. J Theor Biol. 1972 Apr;35(1):159–189. doi: 10.1016/0022-5193(72)90200-7. [DOI] [PubMed] [Google Scholar]
  43. Zeng H., Qian Z., Myers M. P., Rosbash M. A light-entrainment mechanism for the Drosophila circadian clock. Nature. 1996 Mar 14;380(6570):129–135. doi: 10.1038/380129a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES