Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2360–2369. doi: 10.1016/S0006-3495(02)75250-8

Fluctuations and randomness of movement of the bead powered by a single kinesin molecule in a force-clamped motility assay: Monte Carlo simulations.

Yi-der Chen 1, Bo Yan 1, Robert J Rubin 1
PMCID: PMC1302325  PMID: 12414673

Abstract

The motility assay of K. Visscher, M. J. Schnitzer, and S. M. Block (Nature, 400:184-189, 1999) in which the movement of a bead powered by a single kinesin motor can be measured is a very useful tool in characterizing the force-dependent steps of the mechanochemical cycle of kinesin motors, because in this assay the external force applied to the bead can be controlled (clamped) arbitrarily. However, because the bead is elastically attached to the motor and the response of the clamp is not fast enough to compensate the Brownian motion of the bead, interpretation or analysis of the data obtained from the assay is not trivial. In a recent paper (Y. Chen and B. Yan, Biophys. Chem. 91:79-91, 2001), we showed how to evaluate the mean velocity of the bead and the motor in the motility assay for a given mechanochemical cycle. In this paper we extend the study to the evaluation of the fluctuation or the randomness of the velocity using a Monte Carlo simulation method. Similar to the mean, we found that the randomness of the velocity of the motor is also influenced by the parameters that affect the dynamic behavior of the bead, such as the viscosity of the medium, the size of the bead, the stiffness of the elastic element connecting the bead and the motor, etc. The method presented in this paper should be useful in modeling the kinetic mechanism of any processive motor (such as conventional kinesin and myosin V) based on measured force-clamp motility data.

Full Text

The Full Text of this article is available as a PDF (383.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brokaw C. J. Computer simulation of movement-generating cross-bridges. Biophys J. 1976 Sep;16(9):1013–1027. doi: 10.1016/S0006-3495(76)85752-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brokaw C. J. Stochastic simulation of processive and oscillatory sliding using a two-headed model for axonemal dynein. Cell Motil Cytoskeleton. 2000 Oct;47(2):108–119. doi: 10.1002/1097-0169(200010)47:2<108::AID-CM2>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  3. Brokaw C. J. Weakly-coupled models for motor enzyme function. J Muscle Res Cell Motil. 1995 Jun;16(3):197–211. doi: 10.1007/BF00121129. [DOI] [PubMed] [Google Scholar]
  4. Chen Y. D., Yan B. Theoretical formalism for bead movement powered by single two-headed motors in a motility assay. Biophys Chem. 2001 Jun 15;91(1):79–91. doi: 10.1016/s0301-4622(01)00153-3. [DOI] [PubMed] [Google Scholar]
  5. Coppin C. M., Pierce D. W., Hsu L., Vale R. D. The load dependence of kinesin's mechanical cycle. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8539–8544. doi: 10.1073/pnas.94.16.8539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cross R. A. On the hand-over-hand footsteps of kinesin heads. J Muscle Res Cell Motil. 1995 Apr;16(2):91–94. doi: 10.1007/BF00122526. [DOI] [PubMed] [Google Scholar]
  7. Fisher M. E., Kolomeisky A. B. Simple mechanochemistry describes the dynamics of kinesin molecules. Proc Natl Acad Sci U S A. 2001 Jun 26;98(14):7748–7753. doi: 10.1073/pnas.141080498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fisher M. E., Kolomeisky A. B. The force exerted by a molecular motor. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6597–6602. doi: 10.1073/pnas.96.12.6597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gelles J., Berliner E., Young E. C., Mahtani H. K., Perez-Ramirez B., Anderson K. Structural and functional features of one- and two-headed biotinated kinesin derivatives. Biophys J. 1995 Apr;68(4 Suppl):276S–282S. [PMC free article] [PubMed] [Google Scholar]
  10. Hancock W. O., Howard J. Kinesin's processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13147–13152. doi: 10.1073/pnas.96.23.13147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kojima H., Muto E., Higuchi H., Yanagida T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys J. 1997 Oct;73(4):2012–2022. doi: 10.1016/S0006-3495(97)78231-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mehta A. Myosin learns to walk. J Cell Sci. 2001 Jun;114(Pt 11):1981–1998. doi: 10.1242/jcs.114.11.1981. [DOI] [PubMed] [Google Scholar]
  13. Pate E., Cooke R. Simulation of stochastic processes in motile crossbridge systems. J Muscle Res Cell Motil. 1991 Aug;12(4):376–393. doi: 10.1007/BF01738593. [DOI] [PubMed] [Google Scholar]
  14. Peskin C. S., Oster G. Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys J. 1995 Apr;68(4 Suppl):202S–211S. [PMC free article] [PubMed] [Google Scholar]
  15. Qian H. A simple theory of motor protein kinetics and energetics. II. Biophys Chem. 2000 Jan 10;83(1):35–43. doi: 10.1016/s0301-4622(99)00121-0. [DOI] [PubMed] [Google Scholar]
  16. Qian H. A simple theory of motor protein kinetics and energetics. Biophys Chem. 1997 Sep 1;67(1-3):263–267. doi: 10.1016/s0301-4622(97)00051-3. [DOI] [PubMed] [Google Scholar]
  17. Rice S., Lin A. W., Safer D., Hart C. L., Naber N., Carragher B. O., Cain S. M., Pechatnikova E., Wilson-Kubalek E. M., Whittaker M. A structural change in the kinesin motor protein that drives motility. Nature. 1999 Dec 16;402(6763):778–784. doi: 10.1038/45483. [DOI] [PubMed] [Google Scholar]
  18. Rief M., Rock R. S., Mehta A. D., Mooseker M. S., Cheney R. E., Spudich J. A. Myosin-V stepping kinetics: a molecular model for processivity. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9482–9486. doi: 10.1073/pnas.97.17.9482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Romberg L., Pierce D. W., Vale R. D. Role of the kinesin neck region in processive microtubule-based motility. J Cell Biol. 1998 Mar 23;140(6):1407–1416. doi: 10.1083/jcb.140.6.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schief W. R., Howard J. Conformational changes during kinesin motility. Curr Opin Cell Biol. 2001 Feb;13(1):19–28. doi: 10.1016/s0955-0674(00)00169-1. [DOI] [PubMed] [Google Scholar]
  21. Schnitzer M. J., Block S. M. Statistical kinetics of processive enzymes. Cold Spring Harb Symp Quant Biol. 1995;60:793–802. doi: 10.1101/sqb.1995.060.01.085. [DOI] [PubMed] [Google Scholar]
  22. Schnitzer M. J., Visscher K., Block S. M. Force production by single kinesin motors. Nat Cell Biol. 2000 Oct;2(10):718–723. doi: 10.1038/35036345. [DOI] [PubMed] [Google Scholar]
  23. Svoboda K., Block S. M. Force and velocity measured for single kinesin molecules. Cell. 1994 Jun 3;77(5):773–784. doi: 10.1016/0092-8674(94)90060-4. [DOI] [PubMed] [Google Scholar]
  24. Visscher K., Schnitzer M. J., Block S. M. Single kinesin molecules studied with a molecular force clamp. Nature. 1999 Jul 8;400(6740):184–189. doi: 10.1038/22146. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES