Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2370–2385. doi: 10.1016/S0006-3495(02)75251-X

Brownian dynamics simulations of the recognition of the scorpion toxin maurotoxin with the voltage-gated potassium ion channels.

Wei Fu 1, Meng Cui 1, James M Briggs 1, Xiaoqin Huang 1, Bing Xiong 1, Yingmin Zhang 1, Xiaomin Luo 1, Jianhua Shen 1, Ruyun Ji 1, Hualiang Jiang 1, Kaixian Chen 1
PMCID: PMC1302326  PMID: 12414674

Abstract

The recognition of the scorpion toxin maurotoxin (MTX) by the voltage-gated potassium (Kv1) channels, Kv1.1, Kv1.2, and Kv1.3, has been studied by means of Brownian dynamics (BD) simulations. All of the 35 available structures of MTX in the Protein Data Bank (http://www.rcsb.org/pdb) determined by nuclear magnetic resonance were considered during the simulations, which indicated that the conformation of MTX significantly affected both the recognition and the binding between MTX and the Kv1 channels. Comparing the top five highest-frequency structures of MTX binding to the Kv1 channels, we found that the Kv1.2 channel, with the highest docking frequencies and the lowest electrostatic interaction energies, was the most favorable for MTX binding, whereas Kv1.1 was intermediate, and Kv1.3 was the least favorable one. Among the 35 structures of MTX, the 10th structure docked into the binding site of the Kv1.2 channel with the highest probability and the most favorable electrostatic interactions. From the MTX-Kv1.2 binding model, we identified the critical residues for the recognition of these two proteins through triplet contact analyses. MTX locates around the extracellular mouth of the Kv1 channels, making contacts with its beta-sheets. Lys23, a conserved amino acid in the scorpion toxins, protrudes into the pore of the Kv1.2 channel and forms two hydrogen bonds with the conserved residues Gly401(D) and Tyr400(C) and one hydrophobic contact with Gly401(C) of the Kv1.2 channel. The critical triplet contacts for recognition between MTX and the Kv1.2 channel are Lys23(MTX)-Asp402(C)(Kv1), Lys27(MTX)-Asp378(D)(Kv1), and Lys30(MTX)-Asp402(A)(Kv1). In addition, six hydrogen-bonding interactions are formed between residues Lys23, Lys27, Lys30, and Tyr32 of MTX and residues Gly401, Tyr400, Asp402, Asp378, and Thr406 of Kv1.2. Many of them are formed by side chains of residues of MTX and backbone atoms of the Kv1.2 channel. Five hydrophobic contacts exist between residues Pro20, Lys23, Lys30 and Tyr32 of MTX and residues Asp402, Val404, Gly401, and Arg377 of the Kv1.2 channel. The simulation results are in agreement with the previous molecular biology experiments and explain the binding phenomena between MTX and Kv1 channels at the molecular level. The consistency between the results of the BD simulations and the experimental data indicated that our three-dimensional model of the MTX-Kv1.2 channel complex is reasonable and can be used in additional biological studies, such as rational design of novel therapeutic agents blocking the voltage-gated channels and in mutagenesis studies in both the toxins and the Kv1 channels. In particular, both the BD simulations and the molecular mechanics refinements indicate that residue Asp378 of the Kv1.2 channel is critical for its recognition and binding functionality toward MTX. This phenomenon has not been appreciated in the previous mutagenesis experiments, indicating this might be a new clue for additional functional study of Kv1 channels.

Full Text

The Full Text of this article is available as a PDF (704.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiyar J., Withka J. M., Rizzi J. P., Singleton D. H., Andrews G. C., Lin W., Boyd J., Hanson D. C., Simon M., Dethlefs B. Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins. Neuron. 1995 Nov;15(5):1169–1181. doi: 10.1016/0896-6273(95)90104-3. [DOI] [PubMed] [Google Scholar]
  2. Avdonin V., Nolan B., Sabatier J. M., De Waard M., Hoshi T. Mechanisms of maurotoxin action on Shaker potassium channels. Biophys J. 2000 Aug;79(2):776–787. doi: 10.1016/S0006-3495(00)76335-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Blanc E., Sabatier J. M., Kharrat R., Meunier S., el Ayeb M., Van Rietschoten J., Darbon H. Solution structure of maurotoxin, a scorpion toxin from Scorpio maurus, with high affinity for voltage-gated potassium channels. Proteins. 1997 Nov;29(3):321–333. [PubMed] [Google Scholar]
  5. Bontems F., Gilquin B., Roumestand C., Ménez A., Toma F. Analysis of side-chain organization on a refined model of charybdotoxin: structural and functional implications. Biochemistry. 1992 Sep 1;31(34):7756–7764. doi: 10.1021/bi00149a003. [DOI] [PubMed] [Google Scholar]
  6. Brandt T., Strupp M. Episodic ataxia type 1 and 2 (familial periodic ataxia/vertigo). Audiol Neurootol. 1997 Nov-Dec;2(6):373–383. doi: 10.1159/000259262. [DOI] [PubMed] [Google Scholar]
  7. Carlier E., Avdonin V., Geib S., Fajloun Z., Kharrat R., Rochat H., Sabatier J. M., Hoshi T., De Waard M. Effect of maurotoxin, a four disulfide-bridged toxin from the chactoid scorpion Scorpio maurus, on Shaker K+ channels. J Pept Res. 2000 Jun;55(6):419–427. doi: 10.1034/j.1399-3011.2000.00715.x. [DOI] [PubMed] [Google Scholar]
  8. Carlier E., Fajloun Z., Mansuelle P., Fathallah M., Mosbah A., Oughideni R., Sandoz G., Di Luccio E., Geib S., Regaya I. Disulfide bridge reorganization induced by proline mutations in maurotoxin. FEBS Lett. 2001 Feb 2;489(2-3):202–207. doi: 10.1016/s0014-5793(00)02433-9. [DOI] [PubMed] [Google Scholar]
  9. Cui M., Shen J., Briggs J. M., Luo X., Tan X., Jiang H., Chen K., Ji R. Brownian dynamics simulations of interaction between scorpion toxin Lq2 and potassium ion channel. Biophys J. 2001 Apr;80(4):1659–1669. doi: 10.1016/S0006-3495(01)76138-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cui Meng, Shen Jianhua, Briggs James M., Fu Wei, Wu Jingjiang, Zhang Yingmin, Luo Xiaomin, Chi Zhengwu, Ji Ruyun, Jiang Hualiang. Brownian dynamics simulations of the recognition of the scorpion toxin P05 with the small-conductance calcium-activated potassium channels. J Mol Biol. 2002 Apr 26;318(2):417–428. doi: 10.1016/S0022-2836(02)00095-5. [DOI] [PubMed] [Google Scholar]
  11. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  12. Fajloun Z., Ferrat G., Carlier E., Fathallah M., Lecomte C., Sandoz G., di Luccio E., Mabrouk K., Legros C., Darbon H. Synthesis, 1H NMR structure, and activity of a three-disulfide-bridged maurotoxin analog designed to restore the consensus motif of scorpion toxins. J Biol Chem. 2000 May 5;275(18):13605–13612. doi: 10.1074/jbc.275.18.13605. [DOI] [PubMed] [Google Scholar]
  13. Fajloun Z., Mosbah A., Carlier E., Mansuelle P., Sandoz G., Fathallah M., di Luccio E., Devaux C., Rochat H., Darbon H. Maurotoxin versus Pi1/HsTx1 scorpion toxins. Toward new insights in the understanding of their distinct disulfide bridge patterns. J Biol Chem. 2000 Dec 15;275(50):39394–39402. doi: 10.1074/jbc.M006810200. [DOI] [PubMed] [Google Scholar]
  14. Gabdoulline R. R., Wade R. C. Brownian dynamics simulation of protein-protein diffusional encounter. Methods. 1998 Mar;14(3):329–341. doi: 10.1006/meth.1998.0588. [DOI] [PubMed] [Google Scholar]
  15. Goldstein S. A., Colatsky T. J. Ion channels: too complex for rational drug design? Neuron. 1996 May;16(5):913–919. doi: 10.1016/s0896-6273(00)80114-2. [DOI] [PubMed] [Google Scholar]
  16. Goldstein S. A., Pheasant D. J., Miller C. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition. Neuron. 1994 Jun;12(6):1377–1388. doi: 10.1016/0896-6273(94)90452-9. [DOI] [PubMed] [Google Scholar]
  17. Grissmer S., Nguyen A. N., Aiyar J., Hanson D. C., Mather R. J., Gutman G. A., Karmilowicz M. J., Auperin D. D., Chandy K. G. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol. 1994 Jun;45(6):1227–1234. [PubMed] [Google Scholar]
  18. Heginbotham L., Abramson T., MacKinnon R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science. 1992 Nov 13;258(5085):1152–1155. doi: 10.1126/science.1279807. [DOI] [PubMed] [Google Scholar]
  19. Heginbotham L., Lu Z., Abramson T., MacKinnon R. Mutations in the K+ channel signature sequence. Biophys J. 1994 Apr;66(4):1061–1067. doi: 10.1016/S0006-3495(94)80887-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hoshi T., Zagotta W. N., Aldrich R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990 Oct 26;250(4980):533–538. doi: 10.1126/science.2122519. [DOI] [PubMed] [Google Scholar]
  21. Kaczorowski G. J., Garcia M. L. Pharmacology of voltage-gated and calcium-activated potassium channels. Curr Opin Chem Biol. 1999 Aug;3(4):448–458. doi: 10.1016/S1367-5931(99)80066-0. [DOI] [PubMed] [Google Scholar]
  22. Kharrat R., Mabrouk K., Crest M., Darbon H., Oughideni R., Martin-Eauclaire M. F., Jacquet G., el Ayeb M., Van Rietschoten J., Rochat H. Chemical synthesis and characterization of maurotoxin, a short scorpion toxin with four disulfide bridges that acts on K+ channels. Eur J Biochem. 1996 Dec 15;242(3):491–498. doi: 10.1111/j.1432-1033.1996.0491r.x. [DOI] [PubMed] [Google Scholar]
  23. Kharrat R., Mansuelle P., Sampieri F., Crest M., Oughideni R., Van Rietschoten J., Martin-Eauclaire M. F., Rochat H., El Ayeb M. Maurotoxin, a four disulfide bridge toxin from Scorpio maurus venom: purification, structure and action on potassium channels. FEBS Lett. 1997 Apr 14;406(3):284–290. doi: 10.1016/s0014-5793(97)00285-8. [DOI] [PubMed] [Google Scholar]
  24. Lebrun B., Romi-Lebrun R., Martin-Eauclaire M. F., Yasuda A., Ishiguro M., Oyama Y., Pongs O., Nakajima T. A four-disulphide-bridged toxin, with high affinity towards voltage-gated K+ channels, isolated from Heterometrus spinnifer (Scorpionidae) venom. Biochem J. 1997 Nov 15;328(Pt 1):321–327. doi: 10.1042/bj3280321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Legros C., Pollmann V., Knaus H. G., Farrell A. M., Darbon H., Bougis P. E., Martin-Eauclaire M. F., Pongs O. Generating a high affinity scorpion toxin receptor in KcsA-Kv1.3 chimeric potassium channels. J Biol Chem. 2000 Jun 2;275(22):16918–16924. doi: 10.1074/jbc.275.22.16918. [DOI] [PubMed] [Google Scholar]
  26. MacKinnon R., Cohen S. L., Kuo A., Lee A., Chait B. T. Structural conservation in prokaryotic and eukaryotic potassium channels. Science. 1998 Apr 3;280(5360):106–109. doi: 10.1126/science.280.5360.106. [DOI] [PubMed] [Google Scholar]
  27. Matthew J. B. Electrostatic effects in proteins. Annu Rev Biophys Biophys Chem. 1985;14:387–417. doi: 10.1146/annurev.bb.14.060185.002131. [DOI] [PubMed] [Google Scholar]
  28. Matthew J. B., Gurd F. R. Calculation of electrostatic interactions in proteins. Methods Enzymol. 1986;130:413–436. doi: 10.1016/0076-6879(86)30019-3. [DOI] [PubMed] [Google Scholar]
  29. McDonald I. K., Thornton J. M. Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994 May 20;238(5):777–793. doi: 10.1006/jmbi.1994.1334. [DOI] [PubMed] [Google Scholar]
  30. Meiri N., Ghelardini C., Tesco G., Galeotti N., Dahl D., Tomsic D., Cavallaro S., Quattrone A., Capaccioli S., Bartolini A. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4430–4434. doi: 10.1073/pnas.94.9.4430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Miller C. The charybdotoxin family of K+ channel-blocking peptides. Neuron. 1995 Jul;15(1):5–10. doi: 10.1016/0896-6273(95)90057-8. [DOI] [PubMed] [Google Scholar]
  32. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  33. Northrup S. H., Thomasson K. A., Miller C. M., Barker P. D., Eltis L. D., Guillemette J. G., Inglis S. C., Mauk A. G. Effects of charged amino acid mutations on the bimolecular kinetics of reduction of yeast iso-1-ferricytochrome c by bovine ferrocytochrome b5. Biochemistry. 1993 Jul 6;32(26):6613–6623. doi: 10.1021/bi00077a014. [DOI] [PubMed] [Google Scholar]
  34. Olamendi-Portugal T., Gómez-Lagunas F., Gurrola G. B., Possani L. D. A novel structural class of K+-channel blocking toxin from the scorpion Pandinus imperator. Biochem J. 1996 May 1;315(Pt 3):977–981. doi: 10.1042/bj3150977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ouporov I. V., Knull H. R., Thomasson K. A. Brownian dynamics simulations of interactions between aldolase and G- or F-actin. Biophys J. 1999 Jan;76(1 Pt 1):17–27. doi: 10.1016/S0006-3495(99)77174-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pearson D. C., Jr, Gross E. L. Brownian dynamics study of the interaction between plastocyanin and cytochrome f. Biophys J. 1998 Dec;75(6):2698–2711. doi: 10.1016/S0006-3495(98)77714-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Smart S. L., Lopantsev V., Zhang C. L., Robbins C. A., Wang H., Chiu S. Y., Schwartzkroin P. A., Messing A., Tempel B. L. Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron. 1998 Apr;20(4):809–819. doi: 10.1016/s0896-6273(00)81018-1. [DOI] [PubMed] [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wallace A. C., Laskowski R. A., Thornton J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995 Feb;8(2):127–134. doi: 10.1093/protein/8.2.127. [DOI] [PubMed] [Google Scholar]
  40. Warwicker J., Watson H. C. Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol. 1982 Jun 5;157(4):671–679. doi: 10.1016/0022-2836(82)90505-8. [DOI] [PubMed] [Google Scholar]
  41. Zacharias M., Luty B. A., Davis M. E., McCammon J. A. Poisson-Boltzmann analysis of the lambda repressor-operator interaction. Biophys J. 1992 Nov;63(5):1280–1285. doi: 10.1016/S0006-3495(92)81723-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES