Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2440–2456. doi: 10.1016/s0006-3495(02)75256-9

Spin-lattice relaxation of coupled metal-radical spin-dimers in proteins: application to Fe(2+)-cofactor (Q(A)(-.), Q(B)(-.), phi(-.)) dimers in reaction centers from photosynthetic bacteria.

Rafael Calvo 1, Roger A Isaacson 1, Edward C Abresch 1, Melvin Y Okamura 1, George Feher 1
PMCID: PMC1302331  PMID: 12414679

Abstract

The spin-lattice relaxation times (T(1)) for the reduced quinone acceptors Q(A)(-.) and Q(B)(-.), and the intermediate pheophytin acceptor phi(-.), were measured in native photosynthetic reaction centers (RC) containing a high spin Fe(2+) (S = 2) and in RCs in which Fe(2+) was replaced by diamagnetic Zn(2+). From these data, the contribution of the Fe(2+) to the spin-lattice relaxation of the cofactors was determined. To relate the spin-lattice relaxation rate to the spin-spin interaction between the Fe(2+) and the cofactors, we developed a spin-dimer model that takes into account the zero field splitting and the rhombicity of the Fe(2+) ion. The relaxation mechanism of the spin-dimer involves a two-phonon process that couples the fast relaxing Fe(2+) spin to the cofactor spin. The process is analogous to the one proposed by R. Orbach (Proc. R. Soc. A. (Lond.). 264:458-484) for rare earth ions. The spin-spin interactions are, in general, composed of exchange and dipolar contributions. For the spin dimers studied in this work the exchange interaction, J(o), is predominant. The values of J(o) for Q(A)(-.)Fe(2+), Q(B)(-.)Fe(2+), and phi(-.)Fe(2+) were determined to be (in kelvin) -0.58, -0.92, and -1.3 x 10(-3), respectively. The |J(o)| of the various cofactors (obtained in this work and those of others) could be fitted with the relation exp(-beta(J)d), where d is the distance between cofactor spins and beta(J) had a value of (0.66-0.86) A(-1). The relation between J(o) and the matrix element |V(ij)|(2) involved in electron transfer rates is discussed.

Full Text

The Full Text of this article is available as a PDF (418.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. P., Feher G., Yeates T. O., Komiya H., Rees D. C. Structure of the reaction center from Rhodobacter sphaeroides R-26: protein-cofactor (quinones and Fe2+) interactions. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8487–8491. doi: 10.1073/pnas.85.22.8487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen J. P., Feher G., Yeates T. O., Komiya H., Rees D. C. Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5730–5734. doi: 10.1073/pnas.84.16.5730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen J. P., Feher G., Yeates T. O., Komiya H., Rees D. C. Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6162–6166. doi: 10.1073/pnas.84.17.6162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Allen J. P., Feher G., Yeates T. O., Rees D. C., Deisenhofer J., Michel H., Huber R. Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by x-ray diffraction. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8589–8593. doi: 10.1073/pnas.83.22.8589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bar G., Bennati M., Nguyen H. H., Ge J., Stubbe J. A., Griffin R. G. High-frequency (140-GHz) time domain EPR and ENDOR spectroscopy: the tyrosyl radical-diiron cofactor in ribonucleotide reductase from yeast. J Am Chem Soc. 2001 Apr 18;123(15):3569–3576. doi: 10.1021/ja003108n. [DOI] [PubMed] [Google Scholar]
  6. Butler W. F., Calvo R., Fredkin D. R., Isaacson R. A., Okamura M. Y., Feher G. The electronic structure of Fe2+ in reaction centers from Rhodopseudomonas sphaeroides. III. EPR measurements of the reduced acceptor complex. Biophys J. 1984 May;45(5):947–973. doi: 10.1016/S0006-3495(84)84241-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Butler W. F., Johnston D. C., Shore H. B., Fredkin D. R., Okamura M. Y., Feher G. The electronic structure of Fe2+ in reaction centers from Rhodopseudomonas sphaeroides. I. Static magnetization measurements. Biophys J. 1980 Dec;32(3):967–992. doi: 10.1016/S0006-3495(80)85030-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chang C. H., Tiede D., Tang J., Smith U., Norris J., Schiffer M. Structure of Rhodopseudomonas sphaeroides R-26 reaction center. FEBS Lett. 1986 Sep 1;205(1):82–86. doi: 10.1016/0014-5793(86)80870-5. [DOI] [PubMed] [Google Scholar]
  9. Debus R. J., Feher G., Okamura M. Y. Iron-depleted reaction centers from Rhodopseudomonas sphaeroides R-26.1: characterization and reconstitution with Fe2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+. Biochemistry. 1986 Apr 22;25(8):2276–2287. doi: 10.1021/bi00356a064. [DOI] [PubMed] [Google Scholar]
  10. Deisenhofer J., Epp O., Sinning I., Michel H. Crystallographic refinement at 2.3 A resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1995 Feb 24;246(3):429–457. doi: 10.1006/jmbi.1994.0097. [DOI] [PubMed] [Google Scholar]
  11. Deligiannakis Y., Rutherford A. W. Spin-lattice relaxation of the pheophytin, Pheo-, radical of photosystem II. Biochemistry. 1996 Sep 3;35(35):11239–11246. doi: 10.1021/bi9608471. [DOI] [PubMed] [Google Scholar]
  12. Ermler U., Fritzsch G., Buchanan S. K., Michel H. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 A resolution: cofactors and protein-cofactor interactions. Structure. 1994 Oct 15;2(10):925–936. doi: 10.1016/s0969-2126(94)00094-8. [DOI] [PubMed] [Google Scholar]
  13. Galli C., MacArthur R., Abu-Soud H. M., Clark P., Steuhr D. J., Brudvig G. W. EPR spectroscopic characterization of neuronal NO synthase. Biochemistry. 1996 Feb 27;35(8):2804–2810. doi: 10.1021/bi9520444. [DOI] [PubMed] [Google Scholar]
  14. Hirsh D. J., Beck W. F., Innes J. B., Brudvig G. W. Using saturation-recovery EPR to measure distances in proteins: applications to photosystem II. Biochemistry. 1992 Jan 21;31(2):532–541. doi: 10.1021/bi00117a033. [DOI] [PubMed] [Google Scholar]
  15. Hopfield J. J. Electron transfer between biological molecules by thermally activated tunneling. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3640–3644. doi: 10.1073/pnas.71.9.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Innes J. B., Brudvig G. W. Location and magnetic relaxation properties of the stable tyrosine radical in photosystem II. Biochemistry. 1989 Feb 7;28(3):1116–1125. doi: 10.1021/bi00429a028. [DOI] [PubMed] [Google Scholar]
  17. Isaacson R. A., Lendzian F., Abresch E. C., Lubitz W., Feher G. Electronic structure of Q-A in reaction centers from Rhodobacter sphaeroides. I. Electron paramagnetic resonance in single crystals. Biophys J. 1995 Aug;69(2):311–322. doi: 10.1016/S0006-3495(95)79936-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Isaacson R. Use of field modulation with boxcar integrator to measure relaxation time in electron spin resonance experiments. J Sci Instrum. 1968 Nov;1(11):1137–1139. doi: 10.1088/0022-3735/1/11/425. [DOI] [PubMed] [Google Scholar]
  19. Koulougliotis D., Schweitzer R. H., Brudvig G. W. The tetranuclear manganese cluster in photosystem II: location and magnetic properties of the S2 state as determined by saturation-recovery EPR spectroscopy. Biochemistry. 1997 Aug 12;36(32):9735–9746. doi: 10.1021/bi970326t. [DOI] [PubMed] [Google Scholar]
  20. Koulougliotis D., Tang X. S., Diner B. A., Brudvig G. W. Spectroscopic evidence for the symmetric location of tyrosines D and Z in photosystem II. Biochemistry. 1995 Mar 7;34(9):2850–2856. doi: 10.1021/bi00009a015. [DOI] [PubMed] [Google Scholar]
  21. Moser C. C., Keske J. M., Warncke K., Farid R. S., Dutton P. L. Nature of biological electron transfer. Nature. 1992 Feb 27;355(6363):796–802. doi: 10.1038/355796a0. [DOI] [PubMed] [Google Scholar]
  22. Norris J. R., Thurnauer M. C., Bowman M. K. Electron spin echo spectroscopy and the study of biological structure and function. Adv Biol Med Phys. 1980;17:365–416. doi: 10.1016/b978-0-12-005217-2.50015-4. [DOI] [PubMed] [Google Scholar]
  23. Okamura M. Y., Isaacson R. A., Feher G. Spectroscopic and kinetic properties of the transient intermediate acceptor in reaction centers of Rhodopseudomonas sphaeroides. Biochim Biophys Acta. 1979 Jun 5;546(3):394–417. doi: 10.1016/0005-2728(79)90076-8. [DOI] [PubMed] [Google Scholar]
  24. Sahlin M., Petersson L., Gräslund A., Ehrenberg A., Sjöberg B. M., Thelander L. Magnetic interaction between the tyrosyl free radical and the antiferromagnetically coupled iron center in ribonucleotide reductase. Biochemistry. 1987 Aug 25;26(17):5541–5548. doi: 10.1021/bi00391a049. [DOI] [PubMed] [Google Scholar]
  25. Scholes C. P., Isaacson R. A., Feher G. Determination of the zero-field splitting of Fe 3+ in heme proteins from the temperature dependence of the spin-lattice relaxation rate. Biochim Biophys Acta. 1971 Jul 20;244(1):206–210. doi: 10.1016/0304-4165(71)90138-3. [DOI] [PubMed] [Google Scholar]
  26. Stowell M. H., McPhillips T. M., Rees D. C., Soltis S. M., Abresch E., Feher G. Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science. 1997 May 2;276(5313):812–816. doi: 10.1126/science.276.5313.812. [DOI] [PubMed] [Google Scholar]
  27. Telser J., Lee H. I., Hoffman B. M. Investigation of exchange couplings in [Fe3S4]+ clusters by electron spin-lattice relaxation. J Biol Inorg Chem. 2000 Jun;5(3):369–380. doi: 10.1007/pl00010666. [DOI] [PubMed] [Google Scholar]
  28. Tezcan F. A., Crane B. R., Winkler J. R., Gray H. B. Electron tunneling in protein crystals. Proc Natl Acad Sci U S A. 2001 Apr 10;98(9):5002–5006. doi: 10.1073/pnas.081072898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Utschig L. M., Greenfield S. R., Tang J., Laible P. D., Thurnauer M. C. Influence of iron-removal procedures on sequential electron transfer in photosynthetic bacterial reaction centers studied by transient EPR spectroscopy. Biochemistry. 1997 Jul 15;36(28):8548–8558. doi: 10.1021/bi9630319. [DOI] [PubMed] [Google Scholar]
  30. Waldeck A. R., Stowell M. H., Lee H. K., Hung S. C., Matsson M., Hederstedt L., Ackrell B. A., Chan S. I. Electron paramagnetic resonance studies of succinate:ubiquinone oxidoreductase from Paracoccus denitrificans. Evidence for a magnetic interaction between the 3Fe-4S cluster and cytochrome b. J Biol Chem. 1997 Aug 1;272(31):19373–19382. doi: 10.1074/jbc.272.31.19373. [DOI] [PubMed] [Google Scholar]
  31. Yeates T. O., Komiya H., Chirino A., Rees D. C., Allen J. P., Feher G. Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7993–7997. doi: 10.1073/pnas.85.21.7993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yeates T. O., Komiya H., Rees D. C., Allen J. P., Feher G. Structure of the reaction center from Rhodobacter sphaeroides R-26: membrane-protein interactions. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6438–6442. doi: 10.1073/pnas.84.18.6438. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES