Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2482–2490. doi: 10.1016/S0006-3495(02)75259-4

Depletion-mediated red blood cell aggregation in polymer solutions.

Björn Neu 1, Herbert J Meiselman 1
PMCID: PMC1302334  PMID: 12414682

Abstract

Polymer-induced red blood cell (RBC) aggregation is of current basic science and clinical interest, and a depletion-mediated model for this phenomenon has been suggested; to date, however, analytical approaches to this model are lacking. An approach is thus described for calculating the interaction energy between RBC in polymer solutions. The model combines electrostatic repulsion due to RBC surface charge with osmotic attractive forces due to polymer depletion near the RBC surface. The effects of polymer concentration and polymer physicochemical properties on depletion layer thickness and on polymer penetration into the RBC glycocalyx are considered for 40 to 500 kDa dextran and for 18 to 35 kDa poly (ethylene glycol). The calculated results are in excellent agreement with literature data for cell-cell affinities and with RBC aggregation-polymer concentration relations. These findings thus lend strong support to depletion interactions as the basis for polymer-induced RBC aggregation and suggest the usefulness of this approach for exploring interactions between macromolecules and the RBC glycocalyx.

Full Text

The Full Text of this article is available as a PDF (163.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong J. K., Meiselman H. J., Wenby R. B., Fisher T. C. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers. Biorheology. 2001;38(2-3):239–247. [PubMed] [Google Scholar]
  2. Boynard M., Lelievre J. C. Size determination of red blood cell aggregates induced by dextran using ultrasound backscattering phenomenon. Biorheology. 1990;27(1):39–46. doi: 10.3233/bir-1990-27104. [DOI] [PubMed] [Google Scholar]
  3. Buxbaum K., Evans E., Brooks D. E. Quantitation of surface affinities of red blood cells in dextran solutions and plasma. Biochemistry. 1982 Jun 22;21(13):3235–3239. doi: 10.1021/bi00256a032. [DOI] [PubMed] [Google Scholar]
  4. Bäumler H., Donath E., Krabi A., Knippel W., Budde A., Kiesewetter H. Electrophoresis of human red blood cells and platelets. Evidence for depletion of dextran. Biorheology. 1996 Jul-Oct;33(4-5):333–351. doi: 10.1016/0006-355x(96)00026-1. [DOI] [PubMed] [Google Scholar]
  5. Bäumler H., Neu B., Mitlöhner R., Georgieva R., Meiselman H. J., Kiesewetter H. Electrophoretic and aggregation behavior of bovine, horse and human red blood cells in plasma and in polymer solutions. Biorheology. 2001;38(1):39–51. [PubMed] [Google Scholar]
  6. Cabel M., Meiselman H. J., Popel A. S., Johnson P. C. Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle. Am J Physiol. 1997 Feb;272(2 Pt 2):H1020–H1032. doi: 10.1152/ajpheart.1997.272.2.H1020. [DOI] [PubMed] [Google Scholar]
  7. Chien S., Jan K. Ultrastructural basis of the mechanism of rouleaux formation. Microvasc Res. 1973 Mar;5(2):155–166. doi: 10.1016/0026-2862(73)90068-x. [DOI] [PubMed] [Google Scholar]
  8. Cloutier G., Qin Z. Ultrasound backscattering from non-aggregating and aggregating erythrocytes--a review. Biorheology. 1997 Nov-Dec;34(6):443–470. doi: 10.1016/s0006-355x(98)00026-2. [DOI] [PubMed] [Google Scholar]
  9. Evans E. A., Parsegian V. A. Energetics of membrane deformation and adhesion in cell and vesicle aggregation. Ann N Y Acad Sci. 1983;416:13–33. doi: 10.1111/j.1749-6632.1983.tb35176.x. [DOI] [PubMed] [Google Scholar]
  10. Evans E. A. Structure and deformation properties of red blood cells: concepts and quantitative methods. Methods Enzymol. 1989;173:3–35. doi: 10.1016/s0076-6879(89)73003-2. [DOI] [PubMed] [Google Scholar]
  11. Evans E., Buxbaum K. Affinity of red blood cell membrane for particle surfaces measured by the extent of particle encapsulation. Biophys J. 1981 Apr;34(1):1–12. doi: 10.1016/S0006-3495(81)84834-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holley L., Woodland N., Hung W. T., Cordatos K., Reuben A. Influence of fibrinogen and haematocrit on erythrocyte sedimentation kinetics. Biorheology. 1999;36(4):287–297. [PubMed] [Google Scholar]
  13. Hovav T., Yedgar S., Manny N., Barshtein G. Alteration of red cell aggregability and shape during blood storage. Transfusion. 1999 Mar;39(3):277–281. doi: 10.1046/j.1537-2995.1999.39399219284.x. [DOI] [PubMed] [Google Scholar]
  14. Kounov N. B., Petrov V. G. Determination of erythrocyte aggregation. Math Biosci. 1999 Mar 15;157(1-2):345–356. doi: 10.1016/s0025-5564(98)10090-1. [DOI] [PubMed] [Google Scholar]
  15. Lerche D. Electrostatic fixed charge distribution in the RBC-glycocalyx and their influence upon the total free interaction energy. Biorheology. 1984;21(4):477–492. doi: 10.3233/bir-1984-21407. [DOI] [PubMed] [Google Scholar]
  16. Levine S., Levine M., Sharp K. A., Brooks D. E. Theory of the electrokinetic behavior of human erythrocytes. Biophys J. 1983 May;42(2):127–135. doi: 10.1016/S0006-3495(83)84378-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lim B., Bascom P. A., Cobbold R. S. Simulation of red blood cell aggregation in shear flow. Biorheology. 1997 Nov-Dec;34(6):423–441. doi: 10.1016/s0006-355x(98)00025-0. [DOI] [PubMed] [Google Scholar]
  18. Linderkamp O., Ozanne P., Wu P. Y., Meiselman H. J. Red blood cell aggregation in preterm and term neonates and adults. Pediatr Res. 1984 Dec;18(12):1356–1360. doi: 10.1203/00006450-198412000-00028. [DOI] [PubMed] [Google Scholar]
  19. Meiselman H. J., Baskurt O. K., Sowemimo-Coker S. O., Wenby R. B. Cell electrophoresis studies relevant to red blood cell aggregation. Biorheology. 1999;36(5-6):427–432. [PubMed] [Google Scholar]
  20. Neu B., Armstrong J. K., Fisher T. C., Meiselman H. J. Aggregation of human RBC in binary dextran-PEG polymer mixtures. Biorheology. 2001;38(1):53–68. [PubMed] [Google Scholar]
  21. Neu Björn, Meiselman Herbert J., Bäumler Hans. Electrophoretic mobility of human erythrocytes in the presence of poly(styrene sulfonate). Electrophoresis. 2002 Aug;23(15):2363–2368. doi: 10.1002/1522-2683(200208)23:15<2363::AID-ELPS2363>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  22. Sennaoui A., Boynard M., Pautou C. Characterization of red blood cell aggregate formation using an analytical model of the ultrasonic backscattering coefficient. IEEE Trans Biomed Eng. 1997 Jul;44(7):585–591. doi: 10.1109/10.594899. [DOI] [PubMed] [Google Scholar]
  23. van Oss C. J., Arnold K., Coakley W. T. Depletion flocculation and depletion stabilization of erythrocytes. Cell Biophys. 1990 Aug;17(1):1–10. doi: 10.1007/BF02989801. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES