Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2502–2510. doi: 10.1016/S0006-3495(02)75261-2

Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton.

Scott Pritchard 1, Geoffrey R Erickson 1, Farshid Guilak 1
PMCID: PMC1302336  PMID: 12414684

Abstract

Loading of the spine alters the osmotic environment in the intervertebral disk (IVD) as interstitial water is expressed from the tissue. Cells from the three zones of the IVD, the anulus fibrosus (AF), transition zone (TZ), and nucleus pulposus (NP), respond to osmotic stress with altered biosynthesis through a pathway that may involve calcium (Ca(2+)) as a second messenger. We examined the hypothesis that IVD cells respond to hyperosmotic stress by increasing the concentration of intracellular calcium ([Ca(2+)](i)) through a mechanism involving F-actin. In response to hyperosmotic stress, control cells from all zones decreased in volume and cells from the AF and TZ exhibited [Ca(2+)](i) transients, while cells from the NP did not. Extracellular Ca(2+) was necessary to initiate [Ca(2+)](i) transients. Stabilization of F-actin with phalloidin prevented the Ca(2+) response in AF and TZ cells and decreased the rate of volume change in cells from all zones, coupled with an increase in the elastic moduli and apparent viscosity. Conversely, actin breakdown with cytochalasin D facilitated Ca(2+) signaling while decreasing the elastic moduli and apparent viscosity for NP cells. These results suggest that hyperosmotic stress induces volume change in IVD cells and may initiate [Ca(2+)](i) transients through an actin-dependent mechanism.

Full Text

The Full Text of this article is available as a PDF (233.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Mohanna F. A., Pettit E. J., Hallett M. B. Does actin polymerization status modulate Ca2+ storage in human neutrophils? Release and coalescence of Ca2+ stores by cytochalasins. Exp Cell Res. 1997 Aug 1;234(2):379–387. doi: 10.1006/excr.1997.3596. [DOI] [PubMed] [Google Scholar]
  2. Alexopoulos L. G., Erickson G. R., Guilak F. A method for quantifying cell size from differential interference contrast images: validation and application to osmotically stressed chondrocytes. J Microsc. 2002 Feb;205(Pt 2):125–135. doi: 10.1046/j.0022-2720.2001.00976.x. [DOI] [PubMed] [Google Scholar]
  3. Antoniou J., Steffen T., Nelson F., Winterbottom N., Hollander A. P., Poole R. A., Aebi M., Alini M. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest. 1996 Aug 15;98(4):996–1003. doi: 10.1172/JCI118884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Asada S., Fukuda K., Nishisaka F., Matsukawa M., Hamanisi C. Hydrogen peroxide induces apoptosis of chondrocytes; involvement of calcium ion and extracellular signal-regulated protein kinase. Inflamm Res. 2001 Jan;50(1):19–23. doi: 10.1007/s000110050719. [DOI] [PubMed] [Google Scholar]
  5. Baer A. E., Wang J. Y., Kraus V. B., Setton L. A. Collagen gene expression and mechanical properties of intervertebral disc cell-alginate cultures. J Orthop Res. 2001 Jan;19(1):2–10. doi: 10.1016/S0736-0266(00)00003-6. [DOI] [PubMed] [Google Scholar]
  6. Banuett F. Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev. 1998 Jun;62(2):249–274. doi: 10.1128/mmbr.62.2.249-274.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bibby K. J., McCulloch C. A. Regulation of cell volume and [Ca2+]i in attached human fibroblasts responding to anisosmotic buffers. Am J Physiol. 1994 Jun;266(6 Pt 1):C1639–C1649. doi: 10.1152/ajpcell.1994.266.6.C1639. [DOI] [PubMed] [Google Scholar]
  8. Buckwalter J. A. Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976) 1995 Jun 1;20(11):1307–1314. doi: 10.1097/00007632-199506000-00022. [DOI] [PubMed] [Google Scholar]
  9. Bush P. G., Hall A. C. The osmotic sensitivity of isolated and in situ bovine articular chondrocytes. J Orthop Res. 2001 Sep;19(5):768–778. doi: 10.1016/S0736-0266(01)00013-4. [DOI] [PubMed] [Google Scholar]
  10. Cantiello H. F. Role of actin filament organization in cell volume and ion channel regulation. J Exp Zool. 1997 Dec 1;279(5):425–435. doi: 10.1002/(sici)1097-010x(19971201)279:5<425::aid-jez4>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  11. Dascalu A., Korenstein R., Oron Y., Nevo Z. A hyperosmotic stimulus regulates intracellular pH, calcium, and S-100 protein levels in avian chondrocytes. Biochem Biophys Res Commun. 1996 Oct 14;227(2):368–373. doi: 10.1006/bbrc.1996.1514. [DOI] [PubMed] [Google Scholar]
  12. Dascalu A., Matithyou A., Oron Y., Korenstein R. A hyperosmotic stimulus elevates intracellular calcium and inhibits proliferation of a human keratinocyte cell line. J Invest Dermatol. 2000 Oct;115(4):714–718. doi: 10.1046/j.1523-1747.2000.00099.x. [DOI] [PubMed] [Google Scholar]
  13. Engström K. G., Möller B., Meiselman H. J. Optical evaluation of red blood cell geometry using micropipette aspiration. Blood Cells. 1992;18(2):241–265. [PubMed] [Google Scholar]
  14. Erickson G. R., Alexopoulos L. G., Guilak F. Hyper-osmotic stress induces volume change and calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways. J Biomech. 2001 Dec;34(12):1527–1535. doi: 10.1016/s0021-9290(01)00156-7. [DOI] [PubMed] [Google Scholar]
  15. Errington R. J., Puustjarvi K., White I. R., Roberts S., Urban J. P. Characterisation of cytoplasm-filled processes in cells of the intervertebral disc. J Anat. 1998 Apr;192(Pt 3):369–378. doi: 10.1046/j.1469-7580.1998.19230369.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Guilak F., Ting-Beall H. P., Baer A. E., Trickey W. R., Erickson G. R., Setton L. A. Viscoelastic properties of intervertebral disc cells. Identification of two biomechanically distinct cell populations. Spine (Phila Pa 1976) 1999 Dec 1;24(23):2475–2483. doi: 10.1097/00007632-199912010-00009. [DOI] [PubMed] [Google Scholar]
  17. Guilak Farshid, Erickson Geoffrey R., Ting-Beall H. Ping. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys J. 2002 Feb;82(2):720–727. doi: 10.1016/S0006-3495(02)75434-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Guizouarn H., Motais R., Garcia-Romeu F., Borgese F. Cell volume regulation: the role of taurine loss in maintaining membrane potential and cell pH. J Physiol. 2000 Feb 15;523(Pt 1):147–154. doi: 10.1111/j.1469-7793.2000.t01-1-00147.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hall A. C., Starks I., Shoults C. L., Rashidbigi S. Pathways for K+ transport across the bovine articular chondrocyte membrane and their sensitivity to cell volume. Am J Physiol. 1996 May;270(5 Pt 1):C1300–C1310. doi: 10.1152/ajpcell.1996.270.5.C1300. [DOI] [PubMed] [Google Scholar]
  20. Hallows K. R., Law F. Y., Packman C. H., Knauf P. A. Changes in cytoskeletal actin content, F-actin distribution, and surface morphology during HL-60 cell volume regulation. J Cell Physiol. 1996 Apr;167(1):60–71. doi: 10.1002/(SICI)1097-4652(199604)167:1<60::AID-JCP7>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  21. Hamilton M. T., Ward D. S., Watson P. D. Effect of plasma osmolality on steady-state fluid shifts in perfused cat skeletal muscle. Am J Physiol. 1993 Dec;265(6 Pt 2):R1318–R1323. doi: 10.1152/ajpregu.1993.265.6.R1318. [DOI] [PubMed] [Google Scholar]
  22. Hardingham G. E., Bading H. Calcium as a versatile second messenger in the control of gene expression. Microsc Res Tech. 1999 Sep 15;46(6):348–355. doi: 10.1002/(SICI)1097-0029(19990915)46:6<348::AID-JEMT3>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  23. Henson J. H. Relationships between the actin cytoskeleton and cell volume regulation. Microsc Res Tech. 1999 Oct 15;47(2):155–162. doi: 10.1002/(SICI)1097-0029(19991015)47:2<155::AID-JEMT7>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  24. Hildebrandt J. P., Prowald A. Ca(2+) and p38 MAP kinase regulate mAChR-mediated c-Fos expression in avian exocrine cells. Am J Physiol Cell Physiol. 2000 May;278(5):C879–C884. doi: 10.1152/ajpcell.2000.278.5.C879. [DOI] [PubMed] [Google Scholar]
  25. Hoffmann E. K., Dunham P. B. Membrane mechanisms and intracellular signalling in cell volume regulation. Int Rev Cytol. 1995;161:173–262. doi: 10.1016/s0074-7696(08)62498-5. [DOI] [PubMed] [Google Scholar]
  26. Ingber D. E., Dike L., Hansen L., Karp S., Liley H., Maniotis A., McNamee H., Mooney D., Plopper G., Sims J. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int Rev Cytol. 1994;150:173–224. doi: 10.1016/s0074-7696(08)61542-9. [DOI] [PubMed] [Google Scholar]
  27. Ishihara H., Tsuji H., Hirano N., Ohshima H., Terahata N. Effects of continuous quantitative vibration on rheologic and biological behaviors of the intervertebral disc. Spine (Phila Pa 1976) 1992 Mar;17(3 Suppl):S7–12. doi: 10.1097/00007632-199203001-00002. [DOI] [PubMed] [Google Scholar]
  28. Ishihara H., Warensjo K., Roberts S., Urban J. P. Proteoglycan synthesis in the intervertebral disk nucleus: the role of extracellular osmolality. Am J Physiol. 1997 May;272(5 Pt 1):C1499–C1506. doi: 10.1152/ajpcell.1997.272.5.C1499. [DOI] [PubMed] [Google Scholar]
  29. Kajstura J., Reiss K. F-actin organization influences the osmotic reactions of animal cells. Folia Histochem Cytobiol. 1989;27(4):201–208. [PubMed] [Google Scholar]
  30. Kinosian H. J., Selden L. A., Estes J. E., Gershman L. C. Actin filament annealing in the presence of ATP and phalloidin. Biochemistry. 1993 Nov 23;32(46):12353–12357. doi: 10.1021/bi00097a011. [DOI] [PubMed] [Google Scholar]
  31. Lang F., Busch G. L., Völkl H. The diversity of volume regulatory mechanisms. Cell Physiol Biochem. 1998;8(1-2):1–45. doi: 10.1159/000016269. [DOI] [PubMed] [Google Scholar]
  32. Lange K., Brandt U. Calcium storage and release properties of F-actin: evidence for the involvement of F-actin in cellular calcium signaling. FEBS Lett. 1996 Oct 21;395(2-3):137–142. doi: 10.1016/0014-5793(96)01025-3. [DOI] [PubMed] [Google Scholar]
  33. Lange K. Microvillar Ca++ signaling: a new view of an old problem. J Cell Physiol. 1999 Jul;180(1):19–34. doi: 10.1002/(SICI)1097-4652(199907)180:1<19::AID-JCP3>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  34. Lange K. Regulation of cell volume via microvillar ion channels. J Cell Physiol. 2000 Oct;185(1):21–35. doi: 10.1002/1097-4652(200010)185:1<21::AID-JCP2>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  35. Le Bihan T., Gicquaud C. Stabilization of actin by phalloidin: a differential scanning calorimetric study. Biochem Biophys Res Commun. 1991 Dec 16;181(2):542–547. doi: 10.1016/0006-291x(91)91223-y. [DOI] [PubMed] [Google Scholar]
  36. Lipp P., Niggli E. Ratiometric confocal Ca(2+)-measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium. 1993 May;14(5):359–372. doi: 10.1016/0143-4160(93)90040-d. [DOI] [PubMed] [Google Scholar]
  37. Maldonado B. A., Oegema T. R., Jr Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres. J Orthop Res. 1992 Sep;10(5):677–690. doi: 10.1002/jor.1100100510. [DOI] [PubMed] [Google Scholar]
  38. Malko J. A., Hutton W. C., Fajman W. A. An in vivo magnetic resonance imaging study of changes in the volume (and fluid content) of the lumbar intervertebral discs during a simulated diurnal load cycle. Spine (Phila Pa 1976) 1999 May 15;24(10):1015–1022. doi: 10.1097/00007632-199905150-00016. [DOI] [PubMed] [Google Scholar]
  39. Maximov A. V., Vedernikova E. A., Hinssen H., Khaitlina S. Y., Negulyaev Y. A. Ca-dependent regulation of Na+-selective channels via actin cytoskeleton modification in leukemia cells. FEBS Lett. 1997 Jul 21;412(1):94–96. doi: 10.1016/s0014-5793(97)00754-0. [DOI] [PubMed] [Google Scholar]
  40. McCarty N. A., O'Neil R. G. Calcium signaling in cell volume regulation. Physiol Rev. 1992 Oct;72(4):1037–1061. doi: 10.1152/physrev.1992.72.4.1037. [DOI] [PubMed] [Google Scholar]
  41. McMillan D. W., Garbutt G., Adams M. A. Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann Rheum Dis. 1996 Dec;55(12):880–887. doi: 10.1136/ard.55.12.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Moustakas A., Theodoropoulos P. A., Gravanis A., Häussinger D., Stournaras C. The cytoskeleton in cell volume regulation. Contrib Nephrol. 1998;123:121–134. doi: 10.1159/000059925. [DOI] [PubMed] [Google Scholar]
  43. O'Neill W. C. Physiological significance of volume-regulatory transporters. Am J Physiol. 1999 May;276(5 Pt 1):C995–C1011. doi: 10.1152/ajpcell.1999.276.5.C995. [DOI] [PubMed] [Google Scholar]
  44. Oegema T. R., Jr Biochemistry of the intervertebral disc. Clin Sports Med. 1993 Jul;12(3):419–439. [PubMed] [Google Scholar]
  45. Ohshima H., Tsuji H., Hirano N., Ishihara H., Katoh Y., Yamada H. Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load. Spine (Phila Pa 1976) 1989 Nov;14(11):1234–1244. doi: 10.1097/00007632-198911000-00017. [DOI] [PubMed] [Google Scholar]
  46. Ohshima H., Urban J. P., Bergel D. H. Effect of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J Orthop Res. 1995 Jan;13(1):22–29. doi: 10.1002/jor.1100130106. [DOI] [PubMed] [Google Scholar]
  47. Paajanen H., Lehto I., Alanen A., Erkintalo M., Komu M. Diurnal fluid changes of lumbar discs measured indirectly by magnetic resonance imaging. J Orthop Res. 1994 Jul;12(4):509–514. doi: 10.1002/jor.1100120407. [DOI] [PubMed] [Google Scholar]
  48. Perlman D. F., Goldstein L. Organic osmolyte channels in cell volume regulation in vertebrates. J Exp Zool. 1999 Jun 1;283(7):725–733. [PubMed] [Google Scholar]
  49. Ragette R., Fu C., Bhattacharya J. Barrier effects of hyperosmolar signaling in microvascular endothelium of rat lung. J Clin Invest. 1997 Aug 1;100(3):685–692. doi: 10.1172/JCI119581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Rivero F., Köppel B., Peracino B., Bozzaro S., Siegert F., Weijer C. J., Schleicher M., Albrecht R., Noegel A. A. The role of the cortical cytoskeleton: F-actin crosslinking proteins protect against osmotic stress, ensure cell size, cell shape and motility, and contribute to phagocytosis and development. J Cell Sci. 1996 Nov;109(Pt 11):2679–2691. doi: 10.1242/jcs.109.11.2679. [DOI] [PubMed] [Google Scholar]
  51. Rosado J. A., Sage S. O. The actin cytoskeleton in store-mediated calcium entry. J Physiol. 2000 Jul 15;526(Pt 2):221–229. doi: 10.1111/j.1469-7793.2000.t01-2-00221.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sato M., Theret D. P., Wheeler L. T., Ohshima N., Nerem R. M. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J Biomech Eng. 1990 Aug;112(3):263–268. doi: 10.1115/1.2891183. [DOI] [PubMed] [Google Scholar]
  53. Schliess F., Sinning R., Fischer R., Schmalenbach C., Häussinger D. Calcium-dependent activation of Erk-1 and Erk-2 after hypo-osmotic astrocyte swelling. Biochem J. 1996 Nov 15;320(Pt 1):167–171. doi: 10.1042/bj3200167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Schliwa M. Action of cytochalasin D on cytoskeletal networks. J Cell Biol. 1982 Jan;92(1):79–91. doi: 10.1083/jcb.92.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sheikh S., Gratzer W. B., Pinder J. C., Nash G. B. Actin polymerisation regulates integrin-mediated adhesion as well as rigidity of neutrophils. Biochem Biophys Res Commun. 1997 Sep 29;238(3):910–915. doi: 10.1006/bbrc.1997.7407. [DOI] [PubMed] [Google Scholar]
  56. Small J. V., Gimona M. The cytoskeleton of the vertebrate smooth muscle cell. Acta Physiol Scand. 1998 Dec;164(4):341–348. doi: 10.1046/j.1365-201X.1998.00441.x. [DOI] [PubMed] [Google Scholar]
  57. Ting-Beall H. P., Lee A. S., Hochmuth R. M. Effect of cytochalasin D on the mechanical properties and morphology of passive human neutrophils. Ann Biomed Eng. 1995 Sep-Oct;23(5):666–671. doi: 10.1007/BF02584463. [DOI] [PubMed] [Google Scholar]
  58. Trout J. J., Buckwalter J. A., Moore K. C., Landas S. K. Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell. 1982;14(2):359–369. doi: 10.1016/0040-8166(82)90033-7. [DOI] [PubMed] [Google Scholar]
  59. Tsai M. A., Frank R. S., Waugh R. E. Passive mechanical behavior of human neutrophils: effect of cytochalasin B. Biophys J. 1994 Jun;66(6):2166–2172. doi: 10.1016/S0006-3495(94)81012-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Tseng Y., Fedorov E., McCaffery J. M., Almo S. C., Wirtz D. Micromechanics and ultrastructure of actin filament networks crosslinked by human fascin: a comparison with alpha-actinin. J Mol Biol. 2001 Jul 6;310(2):351–366. doi: 10.1006/jmbi.2001.4716. [DOI] [PubMed] [Google Scholar]
  61. Verkman A. S., van Hoek A. N., Ma T., Frigeri A., Skach W. R., Mitra A., Tamarappoo B. K., Farinas J. Water transport across mammalian cell membranes. Am J Physiol. 1996 Jan;270(1 Pt 1):C12–C30. doi: 10.1152/ajpcell.1996.270.1.C12. [DOI] [PubMed] [Google Scholar]
  62. Waldegger S., Steuer S., Risler T., Heidland A., Capasso G., Massry S., Lang F. Mechanisms and clinical significance of cell volume regulation. Nephrol Dial Transplant. 1998 Apr;13(4):867–874. doi: 10.1093/ndt/13.4.867. [DOI] [PubMed] [Google Scholar]
  63. Wang J. Y., Baer A. E., Kraus V. B., Setton L. A. Intervertebral disc cells exhibit differences in gene expression in alginate and monolayer culture. Spine (Phila Pa 1976) 2001 Aug 15;26(16):1747–1752. doi: 10.1097/00007632-200108150-00003. [DOI] [PubMed] [Google Scholar]
  64. Wang N. Mechanical interactions among cytoskeletal filaments. Hypertension. 1998 Jul;32(1):162–165. doi: 10.1161/01.hyp.32.1.162. [DOI] [PubMed] [Google Scholar]
  65. Warskulat U., Schliess F., Häussinger D. Compatible organic osmolytes and osmotic modulation of inducible nitric oxide synthetase in RAW 264.7 mouse macrophages. Biol Chem. 1998 Jul;379(7):867–874. doi: 10.1515/bchm.1998.379.7.867. [DOI] [PubMed] [Google Scholar]
  66. Wendel H., Dancker P. Influence of phalloidin on both the nucleation and the elongation phase of actin polymerization. Biochim Biophys Acta. 1987 Sep 24;915(2):199–204. doi: 10.1016/0167-4838(87)90300-1. [DOI] [PubMed] [Google Scholar]
  67. Wu Z. Z., Zhang G., Long M., Wang H. B., Song G. B., Cai S. X. Comparison of the viscoelastic properties of normal hepatocytes and hepatocellular carcinoma cells under cytoskeletal perturbation. Biorheology. 2000;37(4):279–290. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES