Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2522–2527. doi: 10.1016/s0006-3495(02)75263-6

SNAREs in opposing bilayers interact in a circular array to form conducting pores.

Sang-Joon Cho 1, Marie Kelly 1, Katherine T Rognlien 1, Jin Ah Cho 1, J K Heinrich Hörber 1, Bhanu P Jena 1
PMCID: PMC1302338  PMID: 12414686

Abstract

The process of fusion at the nerve terminal is mediated via a specialized set of proteins in the synaptic vesicles and the presynaptic membrane. Three soluble N-ethylmaleimide-sensitive factor (NSF)-attachment protein receptors (SNAREs) have been implicated in membrane fusion. The structure and arrangement of these SNAREs associated with lipid bilayers were examined using atomic force microscopy. A bilayer electrophysiological setup allowed for measurements of membrane conductance and capacitance. Here we demonstrate that the interaction of these proteins to form a fusion pore is dependent on the presence of t-SNAREs and v-SNARE in opposing bilayers. Addition of purified recombinant v-SNARE to a t-SNARE-reconstituted lipid membrane increased only the size of the globular t-SNARE oligomer without influencing the electrical properties of the membrane. However when t-SNARE vesicles were added to a v-SNARE membrane, SNAREs assembles in a ring pattern and a stepwise increase in capacitance, and increase in conductance were observed. Thus, t- and v-SNAREs are required to reside in opposing bilayers to allow appropriate t-/v-SNARE interactions leading to membrane fusion.

Full Text

The Full Text of this article is available as a PDF (488.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chan D. C., Kim P. S. HIV entry and its inhibition. Cell. 1998 May 29;93(5):681–684. doi: 10.1016/s0092-8674(00)81430-0. [DOI] [PubMed] [Google Scholar]
  2. Cho Sang-Joon, Jeftinija Ksenija, Glavaski Aleksandra, Jeftinija Srdija, Jena Bhanu P., Anderson Lloyd L. Structure and dynamics of the fusion pores in live GH-secreting cells revealed using atomic force microscopy. Endocrinology. 2002 Mar;143(3):1144–1148. doi: 10.1210/endo.143.3.8773. [DOI] [PubMed] [Google Scholar]
  3. Cho Sang-Joon, Quinn Anthony S., Stromer Marvin H., Dash Sudhansu, Cho Jinah, Taatjes Douglas J., Jena Bhanu P. Structure and dynamics of the fusion pore in live cells. Cell Biol Int. 2002;26(1):35–42. doi: 10.1006/cbir.2001.0849. [DOI] [PubMed] [Google Scholar]
  4. Cho Sang-Joon, Sattar A. K. M. Abdus, Jeong Eun-Hwan, Satchi Mylan, Cho Jin Ah, Dash Sudhansu, Mayes Mary Sue, Stromer Marvin H., Jena Bhanu P. Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc Natl Acad Sci U S A. 2002 Mar 26;99(7):4720–4724. doi: 10.1073/pnas.072083499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen F. S., Niles W. D. Reconstituting channels into planar membranes: a conceptual framework and methods for fusing vesicles to planar bilayer phospholipid membranes. Methods Enzymol. 1993;220:50–68. doi: 10.1016/0076-6879(93)20073-c. [DOI] [PubMed] [Google Scholar]
  6. Fasshauer D., Otto H., Eliason W. K., Jahn R., Brünger A. T. Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J Biol Chem. 1997 Oct 31;272(44):28036–28041. doi: 10.1074/jbc.272.44.28036. [DOI] [PubMed] [Google Scholar]
  7. Hanson P. I., Roth R., Morisaki H., Jahn R., Heuser J. E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell. 1997 Aug 8;90(3):523–535. doi: 10.1016/s0092-8674(00)80512-7. [DOI] [PubMed] [Google Scholar]
  8. Hayashi T., Yamasaki S., Nauenburg S., Binz T., Niemann H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 1995 May 15;14(10):2317–2325. doi: 10.1002/j.1460-2075.1995.tb07226.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jeong E. H., Webster P., Khuong C. Q., Abdus Sattar A. K., Satchi M., Jena B. P. The native membrane fusion machinery in cells. Cell Biol Int. 1998;22(9-10):657–670. doi: 10.1006/cbir.1999.0394. [DOI] [PubMed] [Google Scholar]
  10. Kelly M. L., Woodbury D. J. Ion channels from synaptic vesicle membrane fragments reconstituted into lipid bilayers. Biophys J. 1996 Jun;70(6):2593–2599. doi: 10.1016/S0006-3495(96)79830-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rothman J. E. Mechanisms of intracellular protein transport. Nature. 1994 Nov 3;372(6501):55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
  12. Schneider S. W., Sritharan K. C., Geibel J. P., Oberleithner H., Jena B. P. Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):316–321. doi: 10.1073/pnas.94.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sutton R. B., Fasshauer D., Jahn R., Brunger A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature. 1998 Sep 24;395(6700):347–353. doi: 10.1038/26412. [DOI] [PubMed] [Google Scholar]
  14. Söllner T., Bennett M. K., Whiteheart S. W., Scheller R. H., Rothman J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993 Nov 5;75(3):409–418. doi: 10.1016/0092-8674(93)90376-2. [DOI] [PubMed] [Google Scholar]
  15. Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993 Mar 25;362(6418):318–324. doi: 10.1038/362318a0. [DOI] [PubMed] [Google Scholar]
  16. Weber T., Zemelman B. V., McNew J. A., Westermann B., Gmachl M., Parlati F., Söllner T. H., Rothman J. E. SNAREpins: minimal machinery for membrane fusion. Cell. 1998 Mar 20;92(6):759–772. doi: 10.1016/s0092-8674(00)81404-x. [DOI] [PubMed] [Google Scholar]
  17. Woodbury D. J., Miller C. Nystatin-induced liposome fusion. A versatile approach to ion channel reconstitution into planar bilayers. Biophys J. 1990 Oct;58(4):833–839. doi: 10.1016/S0006-3495(90)82429-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Woodbury D. J. Nystatin/ergosterol method for reconstituting ion channels into planar lipid bilayers. Methods Enzymol. 1999;294:319–339. doi: 10.1016/s0076-6879(99)94020-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES