Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2560–2574. doi: 10.1016/S0006-3495(02)75267-3

Mechanosensitivity of N-type calcium channel currents.

Barbara Calabrese 1, Iustin V Tabarean 1, Peter Juranka 1, Catherine E Morris 1
PMCID: PMC1302342  PMID: 12414690

Abstract

Mechanosensitivity in voltage-gated calcium channels could be an asset to calcium signaling in healthy cells or a liability during trauma. Recombinant N-type channels expressed in HEK cells revealed a spectrum of mechano-responses. When hydrostatic pressure inflated cells under whole-cell clamp, capacitance was unchanged, but peak current reversibly increased ~1.5-fold, correlating with inflation, not applied pressure. Additionally, stretch transiently increased the open-state inactivation rate, irreversibly increased the closed-state inactivation rate, and left-shifted inactivation without affecting the activation curve or rate. Irreversible mechano-responses proved to be mechanically accelerated components of run-down; they were not evident in cell-attached recordings where, however, reversible stretch-induced increases in peak current persisted. T-type channels (alpha(1I) subunit only) were mechano-insensitive when expressed alone or when coexpressed with N-type channels (alpha(1B) and two auxiliary subunits) and costimulated with stretch that augmented N-type current. Along with the cell-attached results, this differential effect indicates that N-type mechanosensitivity did not depend on the recording situation. The insensitivity of T-type currents to stretch suggested that N-type mechano-responses might arise from primary/auxiliary subunit interactions. However, in single-channel recordings, N-type currents exhibited reversible stretch-induced increases in NP(o) whether the alpha(1B) subunit was expressed alone or with auxiliary subunits. These findings set the stage for the molecular dissection of calcium current mechanosensitivity.

Full Text

The Full Text of this article is available as a PDF (360.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal S. K., Nashmi R., Fehlings M. G. Role of L- and N-type calcium channels in the pathophysiology of traumatic spinal cord white matter injury. Neuroscience. 2000;99(1):179–188. doi: 10.1016/s0306-4522(00)00165-2. [DOI] [PubMed] [Google Scholar]
  2. Archer F. R., Doherty P., Collins D., Bolsover S. R. CAMs and FGF cause a local submembrane calcium signal promoting axon outgrowth without a rise in bulk calcium concentration. Eur J Neurosci. 1999 Oct;11(10):3565–3573. doi: 10.1046/j.1460-9568.1999.00773.x. [DOI] [PubMed] [Google Scholar]
  3. Borst J. G., Helmchen F., Sakmann B. Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol. 1995 Dec 15;489(Pt 3):825–840. doi: 10.1113/jphysiol.1995.sp021095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Catterall W. A. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol. 2000;16:521–555. doi: 10.1146/annurev.cellbio.16.1.521. [DOI] [PubMed] [Google Scholar]
  5. Chik C. L., Li B., Negishi T., Karpinski E., Ho A. K. Ceramide inhibits L-type calcium channel currents in rat pinealocytes. Endocrinology. 1999 Dec;140(12):5682–5690. doi: 10.1210/endo.140.12.7199. [DOI] [PubMed] [Google Scholar]
  6. Churchwell K. B., Wright S. H., Emma F., Rosenberg P. A., Strange K. NMDA receptor activation inhibits neuronal volume regulation after swelling induced by veratridine-stimulated Na+ influx in rat cortical cultures. J Neurosci. 1996 Dec 1;16(23):7447–7457. doi: 10.1523/JNEUROSCI.16-23-07447.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conti F., Inoue I., Kukita F., Stühmer W. Pressure dependence of sodium gating currents in the squid giant axon. Eur Biophys J. 1984;11(2):137–147. doi: 10.1007/BF00276629. [DOI] [PubMed] [Google Scholar]
  8. Costantin J. L., Qin N., Waxham M. N., Birnbaumer L., Stefani E. Complete reversal of run-down in rabbit cardiac Ca2+ channels by patch-cramming in Xenopus oocytes; partial reversal by protein kinase A. Pflugers Arch. 1999 May;437(6):888–894. doi: 10.1007/s004240050859. [DOI] [PubMed] [Google Scholar]
  9. Dulhunty A. F., Franzini-Armstrong C. The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J Physiol. 1975 Sep;250(3):513–539. doi: 10.1113/jphysiol.1975.sp011068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Etzion Y., Grossman Y. Pressure-induced depression of synaptic transmission in the cerebellar parallel fibre synapse involves suppression of presynaptic N-type Ca2+ channels. Eur J Neurosci. 2000 Nov;12(11):4007–4016. doi: 10.1046/j.1460-9568.2000.00303.x. [DOI] [PubMed] [Google Scholar]
  11. Gu C. X., Juranka P. F., Morris C. E. Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophys J. 2001 Jun;80(6):2678–2693. doi: 10.1016/S0006-3495(01)76237-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Halpain S. Actin and the agile spine: how and why do dendritic spines dance? Trends Neurosci. 2000 Apr;23(4):141–146. doi: 10.1016/s0166-2236(00)01576-9. [DOI] [PubMed] [Google Scholar]
  13. Hamill O. P., Martinac B. Molecular basis of mechanotransduction in living cells. Physiol Rev. 2001 Apr;81(2):685–740. doi: 10.1152/physrev.2001.81.2.685. [DOI] [PubMed] [Google Scholar]
  14. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  15. Holm A. N., Rich A., Sarr M. G., Farrugia G. Whole cell current and membrane potential regulation by a human smooth muscle mechanosensitive calcium channel. Am J Physiol Gastrointest Liver Physiol. 2000 Dec;279(6):G1155–G1161. doi: 10.1152/ajpgi.2000.279.6.G1155. [DOI] [PubMed] [Google Scholar]
  16. Jaggar J. H., Porter V. A., Lederer W. J., Nelson M. T. Calcium sparks in smooth muscle. Am J Physiol Cell Physiol. 2000 Feb;278(2):C235–C256. doi: 10.1152/ajpcell.2000.278.2.C235. [DOI] [PubMed] [Google Scholar]
  17. Jones L. P., DeMaria C. D., Yue D. T. N-type calcium channel inactivation probed by gating-current analysis. Biophys J. 1999 May;76(5):2530–2552. doi: 10.1016/S0006-3495(99)77407-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kameyama M., Kameyama A., Takano E., Maki M. Run-down of the cardiac L-type Ca2+ channel: partial restoration of channel activity in cell-free patches by calpastatin. Pflugers Arch. 1998 Feb;435(3):344–349. doi: 10.1007/s004240050521. [DOI] [PubMed] [Google Scholar]
  19. Kepplinger K. J., Förstner G., Kahr H., Leitner K., Pammer P., Groschner K., Soldatov N. M., Romanin C. Molecular determinant for run-down of L-type Ca2+ channels localized in the carboxyl terminus of the 1C subunit. J Physiol. 2000 Nov 15;529(Pt 1):119–130. doi: 10.1111/j.1469-7793.2000.00119.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kimura M., Obara K., Sasase T., Ishikawa T., Tanabe Y., Nakayama K. Specific inhibition of stretch-induced increase in L-type calcium channel currents by herbimycin A in canine basilar arterial myocytes. Br J Pharmacol. 2000 Jun;130(4):923–931. doi: 10.1038/sj.bjp.0703360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Komuro H., Rakic P. Selective role of N-type calcium channels in neuronal migration. Science. 1992 Aug 7;257(5071):806–809. doi: 10.1126/science.1323145. [DOI] [PubMed] [Google Scholar]
  22. Korkotian E., Segal M. Spike-associated fast contraction of dendritic spines in cultured hippocampal neurons. Neuron. 2001 Jun;30(3):751–758. doi: 10.1016/s0896-6273(01)00314-2. [DOI] [PubMed] [Google Scholar]
  23. Lamoureux P., Buxbaum R. E., Heidemann S. R. Axonal outgrowth of cultured neurons is not limited by growth cone competition. J Cell Sci. 1998 Nov;111(Pt 21):3245–3252. doi: 10.1242/jcs.111.21.3245. [DOI] [PubMed] [Google Scholar]
  24. Langton P. D. Calcium channel currents recorded from isolated myocytes of rat basilar artery are stretch sensitive. J Physiol. 1993 Nov;471:1–11. doi: 10.1113/jphysiol.1993.sp019887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee J. C., Discher D. E. Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding. Biophys J. 2001 Dec;81(6):3178–3192. doi: 10.1016/S0006-3495(01)75954-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lee J. H., Daud A. N., Cribbs L. L., Lacerda A. E., Pereverzev A., Klöckner U., Schneider T., Perez-Reyes E. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci. 1999 Mar 15;19(6):1912–1921. doi: 10.1523/JNEUROSCI.19-06-01912.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lyford Greg L., Strege Peter R., Shepard Allan, Ou Yijun, Ermilov Leonid, Miller Steven M., Gibbons Simon J., Rae James L., Szurszewski Joseph H., Farrugia Gianrico. alpha(1C) (Ca(V)1.2) L-type calcium channel mediates mechanosensitive calcium regulation. Am J Physiol Cell Physiol. 2002 Sep;283(3):C1001–C1008. doi: 10.1152/ajpcell.00140.2002. [DOI] [PubMed] [Google Scholar]
  28. Martens J. R., Sakamoto N., Sullivan S. A., Grobaski T. D., Tamkun M. M. Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem. 2000 Dec 13;276(11):8409–8414. doi: 10.1074/jbc.M009948200. [DOI] [PubMed] [Google Scholar]
  29. Matsuda N., Hagiwara N., Shoda M., Kasanuki H., Hosoda S. Enhancement of the L-type Ca2+ current by mechanical stimulation in single rabbit cardiac myocytes. Circ Res. 1996 Apr;78(4):650–659. doi: 10.1161/01.res.78.4.650. [DOI] [PubMed] [Google Scholar]
  30. Matzner O., Ben-Tabou S., Nussinovitch I. Hyperosmotic regulation of voltage-gated calcium currents in rat anterior pituitary cells. J Neurophysiol. 1996 May;75(5):1894–1900. doi: 10.1152/jn.1996.75.5.1894. [DOI] [PubMed] [Google Scholar]
  31. Meir A., Dolphin A. C. Known calcium channel alpha1 subunits can form low threshold small conductance channels with similarities to native T-type channels. Neuron. 1998 Feb;20(2):341–351. doi: 10.1016/s0896-6273(00)80461-4. [DOI] [PubMed] [Google Scholar]
  32. Meyer R., Heinemann S. H. Temperature and pressure dependence of Shaker K+ channel N- and C-type inactivation. Eur Biophys J. 1997;26(6):433–445. doi: 10.1007/s002490050098. [DOI] [PubMed] [Google Scholar]
  33. Moreno Davila H. Molecular and functional diversity of voltage-gated calcium channels. Ann N Y Acad Sci. 1999 Apr 30;868:102–117. doi: 10.1111/j.1749-6632.1999.tb11281.x. [DOI] [PubMed] [Google Scholar]
  34. Morris C. E., Homann U. Cell surface area regulation and membrane tension. J Membr Biol. 2001 Jan 15;179(2):79–102. doi: 10.1007/s002320010040. [DOI] [PubMed] [Google Scholar]
  35. Olcese R., Neely A., Qin N., Wei X., Birnbaumer L., Stefani E. Coupling between charge movement and pore opening in vertebrate neuronal alpha 1E calcium channels. J Physiol. 1996 Dec 15;497(Pt 3):675–686. doi: 10.1113/jphysiol.1996.sp021799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ono K., Fozzard H. A. Phosphorylation restores activity of L-type calcium channels after rundown in inside-out patches from rabbit cardiac cells. J Physiol. 1992 Aug;454:673–688. doi: 10.1113/jphysiol.1992.sp019286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pappone P. A., Lee S. C. Purinergic receptor stimulation increases membrane trafficking in brown adipocytes. J Gen Physiol. 1996 Nov;108(5):393–404. doi: 10.1085/jgp.108.5.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Patel A. J., Lazdunski M., Honoré E. Lipid and mechano-gated 2P domain K(+) channels. Curr Opin Cell Biol. 2001 Aug;13(4):422–428. doi: 10.1016/s0955-0674(00)00231-3. [DOI] [PubMed] [Google Scholar]
  39. Patil P. G., Brody D. L., Yue D. T. Preferential closed-state inactivation of neuronal calcium channels. Neuron. 1998 May;20(5):1027–1038. doi: 10.1016/s0896-6273(00)80483-3. [DOI] [PubMed] [Google Scholar]
  40. Raucher D., Sheetz M. P. Characteristics of a membrane reservoir buffering membrane tension. Biophys J. 1999 Oct;77(4):1992–2002. doi: 10.1016/S0006-3495(99)77040-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Romanin C., Grösswagen P., Schindler H. Calpastatin and nucleotides stabilize cardiac calcium channel activity in excised patches. Pflugers Arch. 1991 Mar;418(1-2):86–92. doi: 10.1007/BF00370456. [DOI] [PubMed] [Google Scholar]
  42. Ruiz-Velasco V., Mayer M. B., Hymel L. J. Dihydropyridine-sensitive Ca2+ influx modulated by stretch in A7r5 vascular smooth muscle cells. Eur J Pharmacol. 1996 Feb 5;296(3):327–334. doi: 10.1016/0014-2999(95)00710-5. [DOI] [PubMed] [Google Scholar]
  43. Ryder K. D., Duncan R. L. Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels. J Bone Miner Res. 2001 Feb;16(2):240–248. doi: 10.1359/jbmr.2001.16.2.240. [DOI] [PubMed] [Google Scholar]
  44. Small D. L., Morris C. E. Delayed activation of single mechanosensitive channels in Lymnaea neurons. Am J Physiol. 1994 Aug;267(2 Pt 1):C598–C606. doi: 10.1152/ajpcell.1994.267.2.C598. [DOI] [PubMed] [Google Scholar]
  45. Solsona C., Innocenti B., Fernández J. M. Regulation of exocytotic fusion by cell inflation. Biophys J. 1998 Feb;74(2 Pt 1):1061–1073. doi: 10.1016/S0006-3495(98)74030-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sukharev S., Betanzos M., Chiang C. S., Guy H. R. The gating mechanism of the large mechanosensitive channel MscL. Nature. 2001 Feb 8;409(6821):720–724. doi: 10.1038/35055559. [DOI] [PubMed] [Google Scholar]
  47. Tabarean I. V., Juranka P., Morris C. E. Membrane stretch affects gating modes of a skeletal muscle sodium channel. Biophys J. 1999 Aug;77(2):758–774. doi: 10.1016/S0006-3495(99)76930-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tabarean Iustin V., Morris Catherine E. Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3-S4 linker deletions. Biophys J. 2002 Jun;82(6):2982–2994. doi: 10.1016/S0006-3495(02)75639-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Trouet D., Carton I., Hermans D., Droogmans G., Nilius B., Eggermont J. Inhibition of VRAC by c-Src tyrosine kinase targeted to caveolae is mediated by the Src homology domains. Am J Physiol Cell Physiol. 2001 Jul;281(1):C248–C256. doi: 10.1152/ajpcell.2001.281.1.C248. [DOI] [PubMed] [Google Scholar]
  50. Xu W. X., Kim S. J., Kim S. J., So I., Kang T. M., Rhee J. C., Kim K. W. Effect of stretch on calcium channel currents recorded from the antral circular myocytes of guinea-pig stomach. Pflugers Arch. 1996 Jun;432(2):159–164. doi: 10.1007/s004240050119. [DOI] [PubMed] [Google Scholar]
  51. Zimprich F., Bolsover S. R. Calcium channels in neuroblastoma cell growth cones. Eur J Neurosci. 1996 Mar;8(3):467–475. doi: 10.1111/j.1460-9568.1996.tb01230.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES