Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Nov;83(5):2617–2624. doi: 10.1016/S0006-3495(02)75272-7

Influence of product phase separation on phospholipase A(2) hydrolysis of supported phospholipid bilayers studied by force microscopy.

Lars K Nielsen 1, Konstatin Balashev 1, Thomas H Callisen 1, Thomas Bjørnholm 1
PMCID: PMC1302347  PMID: 12414695

Abstract

In situ atomic force microscopy studies reveal a marked influence of the initial presence of hydrolysis products on the hydrolysis of supported phospholipid bilayers by phospholipase A(2). By analysis of the nano-scale topography of a number of supported bilayers with different initial product concentrations, made by Langmuir-Blodgett deposition, we show that small depressions enriched in products are efficiently promoting enzyme degradation of the bilayer. These small depressions, which are indicative of phase separation, are initially present in samples with 75% products. The kinetics of phospholipase A(2) exhibit under certain conditions an initial phase of slow hydrolysis, termed the latency phase, followed by a marked increase in the hydrolysis rate. The appearance of the phase-separated bilayer is strikingly similar to that of bilayers at the end of the latency phase. By analysis of individual nano-scale defects we illustrate a quantitative difference in the growth rates of defects caused by product aggregation and other structural defects. This difference shows for the first time how the enzyme prefers one type of defect to another.

Full Text

The Full Text of this article is available as a PDF (201.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apitz-Castro R., Jain M. K., De Haas G. H. Origin of the latency phase during the action of phospholipase A2 on unmodified phosphatidylcholine vesicles. Biochim Biophys Acta. 1982 Jun 14;688(2):349–356. doi: 10.1016/0005-2736(82)90346-7. [DOI] [PubMed] [Google Scholar]
  2. Balashev K., Jensen T. R., Kjaer K., Bjørnholm T. Novel methods for studying lipids and lipases and their mutual interaction at interfaces. Part I. Atomic force microscopy. Biochimie. 2001 May;83(5):387–397. doi: 10.1016/s0300-9084(01)01264-0. [DOI] [PubMed] [Google Scholar]
  3. Bhamidipati S. P., Hamilton J. A. Interactions of lyso 1-palmitoylphosphatidylcholine with phospholipids: a 13C and 31P NMR study. Biochemistry. 1995 Apr 25;34(16):5666–5677. doi: 10.1021/bi00016a043. [DOI] [PubMed] [Google Scholar]
  4. Brown S. D., Baker B. L., Bell J. D. Quantification of the interaction of lysolecithin with phosphatidylcholine vesicles using bovine serum albumin: relevance to the activation of phospholipase A2. Biochim Biophys Acta. 1993 May 20;1168(1):13–22. doi: 10.1016/0005-2760(93)90260-g. [DOI] [PubMed] [Google Scholar]
  5. Burack W. R., Biltonen R. L. Lipid bilayer heterogeneities and modulation of phospholipase A2 activity. Chem Phys Lipids. 1994 Sep 6;73(1-2):209–222. doi: 10.1016/0009-3084(94)90182-1. [DOI] [PubMed] [Google Scholar]
  6. Burack W. R., Dibble A. R., Allietta M. M., Biltonen R. L. Changes in vesicle morphology induced by lateral phase separation modulate phospholipase A2 activity. Biochemistry. 1997 Aug 26;36(34):10551–10557. doi: 10.1021/bi970509f. [DOI] [PubMed] [Google Scholar]
  7. Burack W. R., Dibble A. R., Biltonen R. L. The relationship between compositional phase separation and vesicle morphology: implications for the regulation of phospholipase A2 by membrane structure. Chem Phys Lipids. 1997 Nov 19;90(1-2):87–95. doi: 10.1016/s0009-3084(97)00084-4. [DOI] [PubMed] [Google Scholar]
  8. Burack W. R., Gadd M. E., Biltonen R. L. Modulation of phospholipase A2: identification of an inactive membrane-bound state. Biochemistry. 1995 Nov 14;34(45):14819–14828. doi: 10.1021/bi00045a024. [DOI] [PubMed] [Google Scholar]
  9. Burack W. R., Yuan Q., Biltonen R. L. Role of lateral phase separation in the modulation of phospholipase A2 activity. Biochemistry. 1993 Jan 19;32(2):583–589. doi: 10.1021/bi00053a025. [DOI] [PubMed] [Google Scholar]
  10. Callisen T. H., Talmon Y. Direct imaging by cryo-TEM shows membrane break-up by phospholipase A2 enzymatic activity. Biochemistry. 1998 Aug 4;37(31):10987–10993. doi: 10.1021/bi980255d. [DOI] [PubMed] [Google Scholar]
  11. Fernández M. S., Mejía R., Zavala E. The interfacial calcium ion concentration as modulator of the latency phase in the hydrolysis of dimyristoylphosphatidylcholine liposomes by phospholipase A2. Biochem Cell Biol. 1991 Oct-Nov;69(10-11):722–727. doi: 10.1139/o91-108. [DOI] [PubMed] [Google Scholar]
  12. Ghomashchi F., Yu B. Z., Berg O., Jain M. K., Gelb M. H. Interfacial catalysis by phospholipase A2: substrate specificity in vesicles. Biochemistry. 1991 Jul 23;30(29):7318–7329. doi: 10.1021/bi00243a037. [DOI] [PubMed] [Google Scholar]
  13. Grainger D. W., Reichert A., Ringsdorf H., Salesse C. Hydrolytic action of phospholipase A2 in monolayers in the phase transition region: direct observation of enzyme domain formation using fluorescence microscopy. Biochim Biophys Acta. 1990 Apr 30;1023(3):365–379. doi: 10.1016/0005-2736(90)90128-b. [DOI] [PubMed] [Google Scholar]
  14. Grandbois M., Clausen-Schaumann H., Gaub H. Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2. Biophys J. 1998 May;74(5):2398–2404. doi: 10.1016/S0006-3495(98)77948-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henshaw J. B., Olsen C. A., Farnbach A. R., Nielson K. H., Bell J. D. Definition of the specific roles of lysolecithin and palmitic acid in altering the susceptibility of dipalmitoylphosphatidylcholine bilayers to phospholipase A2. Biochemistry. 1998 Jul 28;37(30):10709–10721. doi: 10.1021/bi9728809. [DOI] [PubMed] [Google Scholar]
  16. Hønger T., Jørgensen K., Biltonen R. L., Mouritsen O. G. Systematic relationship between phospholipase A2 activity and dynamic lipid bilayer microheterogeneity. Biochemistry. 1996 Jul 16;35(28):9003–9006. doi: 10.1021/bi960866a. [DOI] [PubMed] [Google Scholar]
  17. Hønger T., Jørgensen K., Stokes D., Biltonen R. L., Mouritsen O. G. Phospholipase A2 activity and physical properties of lipid-bilayer substrates. Methods Enzymol. 1997;286:168–190. doi: 10.1016/s0076-6879(97)86011-9. [DOI] [PubMed] [Google Scholar]
  18. Jain M. K., Krause C. D., Buckley J. T., Bayburt T., Gelb M. H. Characterization of interfacial catalysis by Aeromonas hydrophila lipase/acyltransferase in the highly processive scooting mode. Biochemistry. 1994 May 3;33(17):5011–5020. doi: 10.1021/bi00183a003. [DOI] [PubMed] [Google Scholar]
  19. Jensen T. R., Balashev K., Bjørnholm T., Kjaer K. Novel methods for studying lipids and lipases and their mutual interaction at interfaces. Part II. Surface sensitive synchrotron X-ray scattering. Biochimie. 2001 May;83(5):399–408. doi: 10.1016/s0300-9084(01)01265-2. [DOI] [PubMed] [Google Scholar]
  20. Kudo I., Murakami M., Hara S., Inoue K. Mammalian non-pancreatic phospholipases A2. Biochim Biophys Acta. 1993 Nov 3;1170(3):217–231. doi: 10.1016/0005-2760(93)90003-r. [DOI] [PubMed] [Google Scholar]
  21. Maloney K. M., Grainger D. W. Phase separated anionic domains in ternary mixed lipid monolayers at the air-water interface. Chem Phys Lipids. 1993 Apr;65(1):31–42. doi: 10.1016/0009-3084(93)90079-i. [DOI] [PubMed] [Google Scholar]
  22. Mayer R. J., Marshall L. A. New insights on mammalian phospholipase A2(s); comparison of arachidonoyl-selective and -nonselective enzymes. FASEB J. 1993 Feb 1;7(2):339–348. doi: 10.1096/fasebj.7.2.8440410. [DOI] [PubMed] [Google Scholar]
  23. Muderhwa J. M., Brockman H. L. Lateral lipid distribution is a major regulator of lipase activity. Implications for lipid-mediated signal transduction. J Biol Chem. 1992 Dec 5;267(34):24184–24192. [PubMed] [Google Scholar]
  24. Nielsen L. K., Bjørnholm T., Mouritsen O. G. Fluctuations caught in the act. Nature. 2000 Mar 23;404(6776):352–352. doi: 10.1038/35006162. [DOI] [PubMed] [Google Scholar]
  25. Nielsen L. K., Risbo J., Callisen T. H., Bjørnholm T. Lag-burst kinetics in phospholipase A(2) hydrolysis of DPPC bilayers visualized by atomic force microscopy. Biochim Biophys Acta. 1999 Aug 20;1420(1-2):266–271. doi: 10.1016/s0005-2736(99)00103-0. [DOI] [PubMed] [Google Scholar]
  26. Reichert A., Ringsdorf H., Wagenknecht A. Spontaneous domain formation of phospholipase A2 at interfaces: fluorescence microscopy of the interaction of phospholipase A2 with mixed monolayers of lecithin, lysolecithin and fatty acid. Biochim Biophys Acta. 1992 Apr 29;1106(1):178–188. doi: 10.1016/0005-2736(92)90237-g. [DOI] [PubMed] [Google Scholar]
  27. Shao Z., Yang J. Progress in high resolution atomic force microscopy in biology. Q Rev Biophys. 1995 May;28(2):195–251. doi: 10.1017/s0033583500003061. [DOI] [PubMed] [Google Scholar]
  28. Speijer H., Giesen P. L., Zwaal R. F., Hack C. E., Hermens W. T. Critical micelle concentrations and stirring are rate limiting in the loss of lipid mass during membrane degradation by phospholipase A2. Biophys J. 1996 May;70(5):2239–2247. doi: 10.1016/S0006-3495(96)79789-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tatulian S. A. Toward understanding interfacial activation of secretory phospholipase A2 (PLA2): membrane surface properties and membrane-induced structural changes in the enzyme contribute synergistically to PLA2 activation. Biophys J. 2001 Feb;80(2):789–800. doi: 10.1016/S0006-3495(01)76058-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vadas P., Browning J., Edelson J., Pruzanski W. Extracellular phospholipase A2 expression and inflammation: the relationship with associated disease states. J Lipid Mediat. 1993 Aug;8(1):1–30. [PubMed] [Google Scholar]
  31. Wilson H. A., Waldrip J. B., Nielson K. H., Judd A. M., Han S. K., Cho W., Sims P. J., Bell J. D. Mechanisms by which elevated intracellular calcium induces S49 cell membranes to become susceptible to the action of secretory phospholipase A2. J Biol Chem. 1999 Apr 23;274(17):11494–11504. doi: 10.1074/jbc.274.17.11494. [DOI] [PubMed] [Google Scholar]
  32. Zhou F., Schulten K. Molecular dynamics study of phospholipase A2 on a membrane surface. Proteins. 1996 May;25(1):12–27. doi: 10.1002/(SICI)1097-0134(199605)25:1<12::AID-PROT2>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES